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Abstract

The Eöt-Wash group uses a torsion ring pendulum to measure gravity at sub-millimeter distance scales.  The pendulum is suspended by a tungsten fibre, the noise of which limits the precision of the experiment, so we would like to use a thinner one.  However, thinner fibers are less stiff, and would lead to unnecessarily large signals for the twist angle of the pendulum.  If we could compensate for this loss of stiffness, there would be no problems with using a thinner fiber.  

.  This paper describes three methods that may provide this compensating stiffness, one gravitational, one electrostatic, and one magnetic.  We calculate that the torque of the gravitational method is negligible but that that of the electrostatic and magnetic methods are large enough to be useful.  We also describe an experiment verifying the usefulness of the magnetic method.  


1. Introduction
Various theories of quantum gravity predict deviations from Newton’s classical Law of Gravitation, 

F = Gm1m2/r2, 

at distances on the order of 0.1 mm.  (Some of these theories are summarized in the introduction to reference [1].)  The experiments described in [1] are part of an endeavor by the Eöt-Wash group of the University of Washington to detect such deviations.  However, at this time no experiments have found any deviation from Newton’s Law.  Still, this null result places constraints on the theories being tested.  In order to place more stringent constraints, or perhaps to observe new physics, more precision is needed.  


A schematic of one of the instruments used in the Eöt-Wash experiments is shown in Figure 1.  It consists of a ring pendulum suspended by a tungsten fibre 20 μm in diameter over an attractor disk.  The attractor rotates, and its graviational field exerts a torque on the pendulum.  The mirrors allow the reflection of a laser beam that reads the position; the pendulum and mirror assembly weighs about 40 g.  Typical signal sizes are on the order of 1 μradian. (More details can be found in the thesis [1].)


When a string becomes wound as the pendulum spins, it exerts a torque that tends to return the pendulum to the equilibrium position.  To describe this, we use the torsion constant, κ¸ which varies from string to string.  The relationship of κ to the torque τ is linear in the twist angle for the angles we will consider; thus, 

τ = κ θ. 


For the tungsten fiber, κ = .0317 erg*rad-1.  We would like to use a thinner wire, to reduce noise, but this decreases κ as well.  This is problematic because the resonant frequency of the pendulum is defined by the relation 

κ = I ωres2,

where I is the moment of inertia of the pendulum, a constant.  Thus, decreasing κ, in turn, decreases ωres, which is already low (~ .01 s-1, see [1], pg. 92).  Also, decreasing κ increases the observed pendulum twist, which is unnecessary for our instruments and may introduce errors. 


If we could apply some additional restoring torque to the pendulum, we could effectively increase κ, and use a thinner fiber without worrying about the resonant frequency; instead of just τ = κstring θ, we would have

τ = (κstring + κextra) θ
 In particular, if the restoring torque were externally controlled, we could “dial” the desired κ and ωres,  which would allow for much greater flexibility in experimental design.

2. Potential Methods

1.  Gravitational  


The most straightforward way to create a restoring torque would be by fixing posts both onto the pendulum and around the pendulum, in a manner similar to that of Figure 2.  The posts would be initially aligned (that is, d would be a minimum), and their gravitational attraction would provide a torque that would tend to return the pendulum to that equilibrium position.  However, the force obtained for reasonable post sizes is negligible, and cannot be dialed larger.  We will only sketch the fairly straightforward calculation.


Gauss’ Law and cylindrical symmetry give the gravitational field of one infinite cylinder, which we take as a good approximation in the region of the other cylinder, since our posts would be close together and taller than r1 or r2.  This field can then be integrated over the volume of the other cylinder (cylindrical coordinates are easiest).  The torque calculated this way has the form

τ = -4(1- R/d) x ρ2 π2 G r6 {r/(r2 + D2 + x2) + (D2 + x2)-1/2 ArcSin[(D2 + x2)/( r2 + D2 + x2)1/2]},

where ρ is the density of the posts, G is the gravitational constant, and other quantities are defined in the diagram.  


For typical numbers like R = 5 cm, ρ = 1 g/cm3,  x = Rθ = 5 cm*10-6 rad = 5*10-6 cm, r = r1 = r2 = 1 cm, and D = 2.1 cm, the torque from one post is 1.5*10-11 dyne*cm, or, dividing by θ = 10-6 rad, κ = 1.5*10-5 erg*rad-1, too small to be useful.

2.  Electrostatic

A more effective method is to make the posts out of some conducting material, so that the posts can become capacitors.  The pendulum is always maintained at ground voltage, to avoid unwanted electromagnetic disturbances, so the capacitors could be easily charged by applying a convenient voltage to the external posts.  We can show that the capacitance, and hence the potential energy of this arrangement decreases as the pendulum turns, so there will be the desired restorting torque. 

The capacitance per unit length between two infinitely long cylinders (again we assume the posts are tall compared to their radii) is 

C = 2πε0 / ArcCosh[(d2 – r12 – r22)/2r1r2],    [2]
or, in the arrangment of figure 2, 

C = 2πε0 / ArcCosh[(D2 + x2 – r12 – r22)/2r1r2].

ε0 is the permittivity of free space; all other quantities are defined in the diagram. 


The torque that a given configuration provides is the derivative of the potential energy with respect to the angle θ; in this case, R is much larger than the other dimensions, so x ( Rθ, and  

τ = dU/dθ = R dU/dx.

The potential energy of the capacitor is 

U  =  CV2 / 2  =  πε0V2 / ArcCosh[(D2 + x2 – r12 – r22)/2 r1r2], 
in our case.  We can hold V fixed, so we get 

τ = 2πRV2xε0/ (ArcCosh[(D2 + x2 – r12 – r22)/2 r1r2])2 √((D2 + x2 – r12 – r22)2 – 4r12r22).

For instance, if R = 5 cm,  V = 10 Volts, x = Rθ = 5 cm * 10-6 rad = 5*10-6 cm, r1 = 1 cm, r2 = .1 cm, and D = 1.2 cm (this leaves a .1 cm gap between the posts, at closest approach), we get a torque (per unit length) 

τ = 1.8*10-8 (dyne*cm)/cm, and 

κ = 1.8*10-2 (dyne*cm)/(cm*radian). 

Remembering that there are not one but four capacitors, and multiplying by the height of the posts, κ easily becomes greater than .0317 erg/rad; for instance, for a height of 2 cm, κ =  .144 erg/rad.  Further, κ can be dialed by varying the voltage.  Hence, this should be a viable method.
3. Magnetic

i.) The Method

A problem with both of the above methods is that they would involve modifying the pendulum itself, which we were not prepared to do.  This method avoids that.  Solenoids are used to produce a circulating magnetic field, which induces eddy currents on the surface of the metallic pendulum.  These eddy currents are, in turn, interact with the magnetic field; this provides the desired torque.  A drawback of the current design is that it can only provide rotation in one direction, but there is a plan for alterations that would change the torque to be a restoring one.

  The design consists of four solenoids placed around the circumference of the pendulum; nothing is attached to the pendulum itself. (Figure 3a.)  Two solenoids that face each other across the pendulum receive an AC current; the other two solenoids receive that same current after it has been phase shifted by 90o .  The effect is to produce near the pendulum a magnetic field that rotates in a circle. (3b.)  If we assume the pendulum face is flat and parallel to the solenoids, we can approximate the induced eddy currents as concentric circles about the center of the face.  There is no force on the x-component of the current, since it is parallel to the magnetic field, and the force obeys a cross-product law.  The force arises from the z-component, which is clearly in opposite directions on opposite sides of the pendulum.  Thus, there is no net force, but there is a net torque.  (3c.)  


This torque is calculable.  For a current of frequency ω, the magnetic field has the form B = B0 sin[ωt] î + B0 cos[ωt] ĵ.  The induced EMF is then (with ΦB the magnetic flux, and r the radius of one of the loops of current):

ε = -dΦB/dt = - ω B0 π r2 sin[ωt].

This EMF is the line integral of an induced electric field, which points symmetrically around the circumference of the loop.  Hence 

Einduced = ε / 2 π r = ω B0 r sin[ωt].

 
The current this field causes depends on the conductivity of the material, σ, and the cross-sectional area of the current path, a: 

I = ja = σ E a = σ ω B0 r t sin[ωt] dr
(j is the current density, and t is the thickness of the pendulum).  Crossing this with the magnetic field gives the force acting on a surface element of the pendulum:

dF = σ ω B02 r t sin2[ωt] cos[φ] r dr dφ in the z-direction.  
Finally, we cross dF with the radial vector from the axis of the pendulum.  (This radial vector can be in the x-y plane, because we are only concerned with torques that are about the z-axis.)   
dτ = R x dF = R cos[ψ] σ ω B02 r2 t sin2[ωt] cos[φ] dr dφ

        = σ ω B02 r3 t sin2[ωt] cos2[φ] dr dφ.      (R cos[ψ] = r cos[φ]) 

Integrating from 0 to R (the width of the pendulum face) and 0 to 2π, and averaging over a period of time t >> ω, 
τ = σ π ω B02 R4 t / 8.


For an aluminum sheet of thickness 1 mm (σ = 3.6 *107 Ω-1m-1), at  ω =100 Hz, R = 2 cm, and B0 = 1 mGauss, τ = 2.3 * 10-8 dyne*cm.  This is independent of the twist angle, but it is comparable to the torque the fiber exerts at an angle of one μradian: τ = κ θ = (.0317 erg/rad) * 1μrad = 3.17 * 10-8 dyne*cm.  Considering that fields larger than 1 mGauss can be produced, this method should be quite capable of providing large enough torques to increase κ. 

ii.) The Experiment


To obtain some verfication of this calculation, a macroscopic experiment was designed to implement it.  Four solenoids were created by wrapping 50 turns of .023"-diameter copper wire around .5" thick wood cores.  The wire was secured by larger pieces of wood attached by screws to the core.  When completed the solenoids measured 2.84" by 1.76" by 1", ± 0.05".  They were calibrated so that each produced a magnetic field within 2% of the others’.  At the opening of the coil, the magnetic field should follow the known formula 

B = 2πNI/Rc,

where B is in Gauss, N is the number of turns (50), I is the current in statamperes, R is the radius of the coil (approximated as 2 cm), and c is the speed of light.  Thus, for I in Amperes, 

B ( 15 (Gauss/Amp) I.

 Coil 3 was tested for this behavior, and displayed it to 3% accuracy: for currents of .11, .22, and .27 mA, it produced magnetic fields of 1.6, 3.3, and 4.1 Gauss, respectively.  


The coils were attached to a micarta/plastic stand to fix their relative positions; non-conductoring materials were chosen to minimize stray electromagnetic fields.  To ensure that there would be a macroscopic torque, we drove the coils with a Stanford 30 MHz signal generator (DS345) amplified by a Kepco bipolar operational amplifier, which was capable of putting out 72 V.  This signal was then split into two channels, one of which was passed through a power resistor, while the other was passed through a 400 ± 5 μF motor capacitor.  Each channel was passed to a facing pair of coils, and then to ground; the capacitor ensured that the second channel always lagged the first by 900.   

The available pendulum had cutouts in its cylinder, so a lighter object with a complete metallic cylinder was chosen as the test body: an empty Coca-Cola can (from the Coca-Cola Co., Atlanta, GA).  The can weighed 13.10 g, and was supsended from ~25 cm of .0008"-diameter Inconel wire.  The torsion constant of the wire was calculated from the length and diameter to be …  
Thus, to find the torque applied by the coils, we simply had to measure the twist angle through which the can would turn before the torsion overcame the magnetic torque and stopped the can. 


This was done at an input voltage of 36 ± .2 V and frequency of 24 Hz, with a resistance of 16.5 ± .3 Ω (the frequency was chosen so that the impedance of the capacitor would match that of the resistor: 1/ ωC = 16.7 ± .2 Ω).  The input current can be calculated to be 2.18 ± .1 A.  The can was observed to turn 5400 ± 200 from the equilibrium position. …  


iii.)  Calculations


The expected torque from the coils on the can is calculated from the formula derived in section (i.).  For a current of 2.18 ± .1 A, we expect a magnetic field B = 15 I = 32.7 Gauss from each coil.  The expected torque is then τ = σ π ω B02 R4 t / 8 = 36.3 dyne*cm.  For four coils, we expect four times that torque: 145 dyne*cm.     

3. Conclusions
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