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Analysis of the Feasibility of a Metal-Loaded Liquid Scintillator Detector for the MOON Project

The MOON (Molybdenum Observation Of Neutrinos) project is an experi-
ment which intends to determine whether the neutrino is a Majorana particle
or a Dirac particle. If the former is true, MOON also has the potential to
determine the mass of the neutrino very accurately. It will accomplish this
by trying to observe the ββ(0ν) decay of 100Molybdenym. The current de-
sign proposal for the MOON detector is a large ‘foil sandwich’ of thin sheets
of molybdenum foil positioned between slabs of plastic scintillator, with fiber
outputs to photomultiplier tubes (PMTs), or perhaps avalanche photodiodes
(APDs). Another detector design being considered is a spherical molybdenum-
loaded liquid-scintillation detector, similar in design to SNO.

Reduction of background radiations is an important consideration in either
detector. The 26000 m2 surface area of the plastic scintillator modules in the
‘foil sandwich’ must be kept dust-free so that unwanted background sources such
as Rn and its daughters are avoided.1 This would require extensive cleanroom
facilities for production, transportation, and operation of the detector. On the
other hand, liquids are very easily purified and can be conveniently reprocessed
once the detector is constructed and in operation, making the liquid-scintillation
detector an attractive option. The use of APDs in place of PMTs would also help
reduce background radiation. APDs occupy much less volume than PMTs, re-
sulting in less excess material around the detector to harbor background sources.
Since Silicon is a very clean substrate, the glass and metals used in PMTs are
more likely to contain radionuclides than an APD.

APDs have several other advantages when compared to PMTs. APDs have
much higher quantum efficiencies, and when operated in the Geiger mode can be
employed for single-photon counting, which would be the most accurate method
for measuring the energy of an event. They are also lighter and require less
rigorous support structures. APDs have lower operating voltages, are insensitive
to magnetic fields, are less fragile than PMTs, and have long operating lifetimes.
However, APDs are also susceptible to defects which can cause dark counts,
afterpulsing, and optical crosstalk.2

The long half-life for 100Mo ββ(0ν) makes it imperative that large amounts
of Mo are contained in the detector. The spherical design’s maximum volume
for minimum surface area relationship makes it an attractive shape for a detec-
tor, provided a high enough concentration of Mo in liquid scintillator can be
achieved. A smaller surface area requires fewer APDs or PMTs, lowering the
cost of the detector.

1Elliot S and Vogel P, Annu. Rev. Nucl. Part. Sci. 52 (2002)
2W.J. Kindt, Geiger Mode Avalanche Photodiode Arrays for spatially resolved single pho-

ton counting, 5, Delft University Press, 1999.
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A single-photon sensitive detector can be modeled over the region of interest
by analytical equations. These give the researcher the ability to quickly modify
detector parameters and re-evaluate detector effectiveness, a powerful tool in the
development process. Furthermore, predictions of these analytical equations can
be used to check the consistency of Monte Carlo results. Analytical equations
are also helpful for developing a method for the reconstruction of an event from
the resultant data patter (generated by Monte Carlo or by a prototype detector).

For the following derivation, the proposed situation is a spherical detector
of radius R, which is completely covered (with no dead space) at the surface by
M ‘pixels’, which for our discussion will be APDs (though the calculations are
equally applicable for PMTs). Initially we will assume that each pixel is 100%
efficient.

The first equation we need to develop is an expression for the photon flux at
any point in the sphere of radius R from an arbitrary event location. We take
a source event of N photons at point E, a distance r away from the center of
the detector, as shown in Figure 1. The line OE is the event axis, from which
all angles are measured. At a point S on the surface of the sphere a distance k
away from the event source, the photon flux will be

Φ =
N

4πk2
(1)

A straight line ES makes an angle α with the event axis, while the line OS
makes an angle θ with the event axis. From the law of cosines, we can express
k as a function of R, r, and θ:

k2 = R2 + r2 − 2rR cos θ (2)

We can also determine the following relationships between α and θ:

R sin θ = k sin α 3

R cos θ = r + k cos α 4

however, since the flux is perpendicular to ES, and the surface of the sphere
is not perpendicular to ES, we need to include a scaling factor in our flux
equation. A differential section of area dA′ on the surface of a sphere with
radius k centered at E will map to a section of area on the sphere of radius R,
represented in Figure 2. If we say that the area mapped on the larger sphere is
dA, we can express this relationship as

dA′ = dA cos δ (5)

where δ = α−θ. The scaling factor should be dA′
dA = cos (α− θ), so our resultant

flux equation looks like:

Φ =
N cos (α− θ)

4πk2
(6)
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Using the trigonometric difference identity and using (3) and (4) to eliminate
α, we have:

Φ =
N

4πk2

[
R

k
cos2 θ − r

k
cos θ +

R

k
sin2 θ

]
=

N(R− r cos θ)
4πk3

(7)

And substituting with (2) to eliminate k:

Φ(r,N, R) =
N(R− r cos θ)

4π(R2 + r2 − 2rR cos θ)
3
2

(8)

which is an equation for photon flux at any point in the sphere as a function
of the sphere’s radius R, the displacement of the event from the center of the
sphere r, the magnitude of the event in photons N , and the position of the point
on the sphere as referenced by the angle θ it makes with the event axis. Note
that the point on the sphere closest to E is always at θ = 0, while the point
farthest from E is always at θ = π, excluding central events (where all distances
would be equal).

Since photon detection is a statistical process, we must allow for the prob-
ability that multiple photons will hit a single detector pixel, resulting in the
‘loss’ of all photons but the first. We model this probability with a Poisson
distribution based on the local photon flux. For a central event, the average
photon flux at any point in the sphere is N

M , where M is the number of pixels
in the detector. Thus, the Poisson probability distribution is expressed as:

P (γ) =

(
N
M

)γ
e−

N
M

γ!
(9)

where γ is the integer number of photons detected by the particular pixel.
The probability that a pixel is hit is simply the sum of the probabilities for

γ > 0, or
N∑

γ=1

P (γ) = 1− P (0). (10)

This is from the perspective of a particular pixel, however. We wish to know the
probability that a particular photon is detected or not detected (due to pileup).
The probability that a photon is detected is equivalent to the probability that
the pixel it is entering has not been hit by another photon. If we assume
(as we have in the above calculation) that all photons hit simultaneously, the
probability for detection for an arbitrary photon is P (0), or e−

N
M for a central

event.
Next we want to take the event off-center, and allow it to happen at any

point in the sphere. We need to define a local photon flux, dN
dM , which is the

number of photons in a differential number of pixels dM which inhabit a small
area dA. The number of photons passing through dA is simply ΦdA, while the
number of pixels in dA is dA

D , where D is the area of an individual pixel. The
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dA factors cancel, and we are left with the local photon flux as

dN

dM
= ΦD =

ND(R− r cos θ)
4π(R2 + r2 − 2rR cos θ)

3
2

(11)

Since we’re interested in P (0), we simply exponentiate the opposite of this
expression to get our new probability, which is now a function of R, D, r, and
θ.

Pdetection(r,R,D, θ) = e−
dN
dM = e

(
− ND(R−r cos θ)

4π(R2+r2−2rR cos θ)
3
2

)

(12)

We’re intending to put this probability into a binomial distribution later, so we
have to make sure that it’s acceptable for such a situation. R, D, and r are
variables we will set for a specific scenario, but θ varies from 0 to π for any
situation, so we need to eliminate it. We can take an average probability over
the entire surface of the sphere by multiplying by the photon flux (number of
photons at the point in question) and integrating with respect to θ and φ as
follows:

< p > (r,N, D, R) =

∫ 2π

0

∫ π

0
Pdetection(r,R, D, θ)Φ(r,N, R)R2 sin θdθdφ∫ 2π

0

∫ π

0
Φ(r,N, R)R2 sin θdθdφ

(13)

We can substitute (8) and (12) into (13), integrate over dφ, substitute 4πR2

M for
D, and cancel some terms to get

p(r,N, M,R) =

∫ π

0
e

(
−NR2(R−r cos(θ))

M(R2+r2−2rR cos(θ))
3
2

)

(R−r cos(θ)) sin(θ)dθ

(R2+r2−2rR cos(θ))
3
2∫ π

0
(R−r cos(θ)) sin(θ)dθ

(R2+r2−2rR cos(θ))
3
2

(14)

This can be evaluated for a set of values r, N , M , and R. Figure 3 is a plot
of p vs. r for N = 104, M = 106.

The downfall of this method is that it assumes all of the photons are arriving
at the same time. Viewing the process sequentially, the first photon emitted will
have a detection probability equal to 1, because none of the pixels have been hit
before it, thus all are ‘free.’ The second photon will have a detection probability
of M−1

M . This is where the process becomes complicated, because the detection
probability for the third photon is dependant on whether photon 2 is or is
not detected (hits the same pixel as photon 1). If photon 2 is not detected,
photon 3 has the same number of free pixels available to it, and thus the same
probability for detection. However, if photon 2 is detected, then there is one
fewer free pixel, and photon 3 has a detection probability of M−2

M . For the nth

photon, the probability ranges from M−1
M to M−(n−1)

M . This branching nature
can be more clearly seen in a matrix form. Below, this is expressed with Photon
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Number as the vertical index:




0 1 2 3 4
1 1 0 0 0 0
2 M−1

M 0 0 0 0
3 M−2

M
M−1

M 0 0 0
4 M−3

M
M−2

M
M−1

M 0 0
5 M−4

M
M−3

M
M−2

M
M−1

M 0
6 M−5

M
M−4

M
M−3

M
M−2

M
M−1

M
...

...
...

...
...




Each element of the above matrix represents the probability for the sequence
to progress in a downward fashion in the matrix. The probability to progress one
space to the right (diagonally down) is qij = 1− pij . In this form, the number
of ‘missed’ photons is given by the column index, as shown above the matrix.
it is to be noted that the last photon has a minimum detection probability of
M−(N−1)

M , which is approximately what the Poisson statistics developed above
predict for a central event. Thus, we have reason to believe that the Poisson
probability is too low.

An average probability could be found from the sequential method by eval-
uating a weighted sum over every element in the matrix. The weighting wi,j for
any element is the sum of the products of the weighting and progression prob-
ability for the two elements directly leading to that element, w(i−1),jp(i−1),j +
w(i−1),(j−1)q(i−1),(j−1). Each weighting can then be backward-simplified in turn
until the only weighting remaining is w2,1, which is equal to 1. The resulting
equation can be mathematically expressed as

wi,j =
i−2∏
a=1

j∑

k=j−a

p(i−a),k for i < j (15)

A less computationally demanding (though also less accurate) method of
finding an average probability would be to sum only the first column of the
matrix, as all of the elements of the other columns have at least 1 q (low prob-
ability) in their weightings. Unfortunately, this matrix method is not easily
moved off-center. We could instead calculate the probabilities for each photon
by substituting n for N in equation (14) and summing from n = 0 (for the first
photon) to n = N − 1 (for the last photon). Figure 4 is a plot of p(r, n, M, R)
for r = 0, M = 106, and R = 5. As you can see, this is very linear at the values
of n we’re using (around 104). As a result, this sum is very well approximated
by simply evaluating p(r, N

2 , M, R).

N−1∑
n=0

p(r, n,M,R) ≈ p(r,
N

2
,M,R) (16)

Now that we have an expression for the probability of detection for a photon,
we can construct a distribution to represent the probability that the detector
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will register x hits for an event of magnitude N at any point a distance of r
off-center in a detector with M pixels and radius R. The binomial distribution
is appropriate on the entire range from 0 to N , and our distribution looks like
this:

Pb(x,N, p) =
N !

x!(N − x)!
px(1− p)N−x (17)

This equation has a shortcoming however - it is limited to small values of N (for
the purpose of plotting with a computer program such as Maple or Mathemat-
ica) due to the factorials in the coefficient. For plotting with a computer, we
need an equation which can be evaluated more easily. Using Stirling’s formula,
ln (N !) = N ln (N)−N + 1

2 ln (2πN), we can simplify the coefficient to:

ln
(

N !
x!(N − x)!

)
= N ln

(
N

N − x

)
+x ln

(
N − x

x

)
+

1
2

ln
(

N

2πx(N − x)

)
(18)

and the other two terms are simply x ln (p) and (N − x) ln (1− p) respectively.
The new distribution is just the exponentiated sum of the above terms, thus

our approximation looks like:

Pbapprox = e

(
N ln( N

N−x )+x ln(N−x
x )+ 1

2 ln
(

N
2πx(N−x)

)
+x ln(p)+(N−x) ln(1−p)

)

This approximation is very good for most values of x, but breaks down when
x or (N − x) is small because Stirling’s formula is not valid. However, for small
x or (N−x), most of the factors of N ! will cancel with factors of the (N−x)! or
x! in the denominator, leaving only a few multiplications that are easily done by
a computer. We can express this simplified form of the binomial distributions
as: (

x−1∏

k=0

(N − k)

)
px(1− p)N−x

x!
for small x (20)

(
N−x−1∏

k=0

(N − k)

)
px(1− p)N−x

(N − x)!
for small N − x (21)

For N > 103, the approximation derived using Stirling’s formula begins to
deviate significantly at 2 units from the edge of the distribution (i.e. x < 2,
N − x < 2). Thus, to be safe, we use the simplified binomial distribution for
x < 3 and N − 3 < x and use the approximation on the rest of the range,
resulting in a piecewise function:

Prob(x,N, p) =





(∏x−1
k=0(N − k)

)
px(1−p)N−x

x! x < 3
Pbapprox (equation 19) 3 < x < N − 3(∏N−x−1
k=0 (N − k)

)
px(1−p)N−x

(N−x)! N − 3 < x





(4)

This distribution represents the probability for a particular number of hits
per event. Now that we have an expression for this distribution, it is a simple
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exercise on the computer to find the centroid and line width (standard devia-
tion).

Since we are interested in the actual energy of the event, we need to relate
the mean number of hits x to a direct measure of the energy, such as N . The
mean number of hits should just be the number of source photons multiplied by
the probability of detection for an arbitrary photon:

x = Np (23)

where p is equation (14) evaluated as shown in equation (16). We can use this
expression to translate mean number of hits into number of source photons
(since p(0) is dependant on N). Figure 5 is a plot of x vs. N for M = 106 and
r = 0.

The energy resolution (standard deviation) can be obtained by computing
the standard deviation of the distribution given by equation (22), and dividing
by a factor that relates number of hits to number of photons for a particular
value of N . The slope of equation (23) at any point represents this relationship,
so the differential coefficient α = d

dN (x) evaluated at N is the factor we should
use. Using the product rule, we see that

α = p + N
dp

dN

The exponential in the probability integral p is the only factor in the differential
that depends on N , so the differentiation dp

dN is easily carried out:

α(p, N, R, r,M) = p−N

∫ π

0
e

(
−NR2(R−r cos(θ))

M(R2+r2−2rR cos(θ))
3
2

)

R2(R−r cos(θ))2 sin(θ)dθ
M(R2+r2−2rR cos(θ))3∫ π

0
(R−r cos(θ)) sin(θ)dθ

(R2+r2−2rR cos(θ))
3
2

(24)

where p is again equation (14) evaluated as in (16). This is another equation
which is difficult to graph, but can be evaluated for a given N , M , R, and r.
α is nearly 1 for N << M , and approaches 0 as N approaches and exceeds
M . Since α is in units of hits

photons , we divide the standard deviation of our
hit distribution by α to calculate the energy resolution for an event fitting the
provided conditions. Figure 6 is a plot of Energy Resolution vs. Position of
Event (r) for N = 104, M = 106, and R = 5, and assuming a 3 MeV event
energy. This corresponds to about 0.07% energy resolution at the center of the
sphere, and 1% near the outside edge.

The previous calculation assumes that there are exactly N photons per event,
which is not realistic. To correct for this, we can convolve our function with a
distribution function for the source; for our purposes we choose to use a Guassian
function g centered at 0 (so we don’t disrupt the position of the centroid) and
σ =

√
N . Thus, for some N and p, we have:

∫ ∞

0

Prob(v, N, p)g(x− v)dv. (25)
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Unfortunately, the distribution Prob(x,N, p) is not easily convolved with any-
thing analytically or numerically by computer. However, since the function is
based on a binomial distribution, we can model it very effectively with a Gaus-
sian as well, with a mean and standard deviation equal to that of Prob(x,N, p).
Figure 7 shows the probability distribution Prob(x,N, p) and the Gaussian ap-
proximation on the same graph, and Figure 8 shows the resultant Energy Res-
olution vs. Position of Event graph for the M = 106 and R = 5. The energy
resolution has expanded to about 1% at the center of the sphere, reaching just
over 2% at the edge.

Reconstructing the location of an event is also critical in a liquid-scintillation
detector, because the amount of molybdenum (and thus the fiducial volume)
must be known precisely. The hit pattern relative to the event axis should
closely resemble the photon flux distribution given by equation (8). The event
axis must be known for this to be useful; luckily there are several methods
for accomplishing this. If a position vector is assigned to every pixel on the
sphere (with magnitude R), one can treat a hit pixel as a point mass, and a
vector sum of the hit pixels (effectively finding the ‘center of mass’ of the ‘mass
distribution’) would result in a vector pointing in the direction of the event axis.
Another possible method would be to find the areas on the sphere which have
the greatest and smallest density of hit pixels, and use the points of greatest
and least density to construct an axis.

Once the axis is known, a graph of Photon Density vs. θ can be created,
and the distribution can be compared to those generated by equation (8) (See
Figure 9). The most straightforward method for this is modeling the data with
a Gaussian and comparing line width to predicted values, possibly via a graph
of Line Width vs. r developed from equation (8). the background due to dark
counts should be fairly isotropic, and on a graph of Hit Density vs. θ (resembling
Figure 9) will manifest itself as a constant distribution. The distribution due
to the distance off-center of the event location will be superimposed on this
constant background distribution. If the background rate is known the constant
background distribution could be subtracted out.

The above discussion considers an ideal situation. In reality, the quantum
efficiency of the detectors will be less than 100% (and lower still if PMTs are
used), and there will be dead space in the detector (again, more with PMTs).
Both the efficiency and the dead space should manifest themselves as constant
factors ε and η in the probability expression given in equation (14). These
omissions are not the only problems with this detector design, however.

Avalanche photodiodes operated in Geiger mode at room temperature have
a large dark count rate. For a device with an active area of 0.2 mm2, the dark
count rate can exceed 15,000 cps at room temperature.3 If we assume that the
dark count rate scales linearly with area, that’s over 7x106 counts per second for
a 10mm x 10mm square detector, of which approximately 106 would be needed
to cover a detector of R = 5m. Over an approximate event period of 200ns, each
detector would fire 1.5 times due to noise alone. Seeing a 10,000 photon event

3PerkinElmer Optoelectronics, available at http://opto.perkinelmer.com/Downloads/c30902e.pdf
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on top of a background signal 150 times larger is a tall order for any detector.
One option is to cool the detector. At -25oC, the dark count rate drops to

350 cps for a 0.2 mm2 device.4 Using the same scaling as above, each 100mm2

detector would fire 0.036 times per event, resulting in 36,000 dark counts per
event. This dark count rate is more reasonable, but still not desireable. Further
cooling would reduce the background signal to more acceptable levels. If the
relationship between dark count rate and temperature is linear, dropping to
-50oC would reduce the dark count rate to a very manageable 1,800 counts per
event.

Cost is also a hurdle that needs to be overcome before this detector is fea-
sible. A single avalanche photodiode can cost around $400, making the cost
of detectors alone around $400 million dollars (before bulk pricing). Bulk dis-
counts may apply, which would soften this number somewhat, as would using
enriched molybdenum or dissolving a higher concentration of molybdenum in
the liquid scintillator. Unfortunately, dissolving molybdenum in liquid scintilla-
tor is not a trivial task. It is highly colored in many solutions, and some of the
clear molybdenum solutions are unstable. Out of the remaining clear solultions,
many involve doubly-bonded oxygen which quenches scintillation.

Still, the results of the analytical expressions derived in this document are
encouraging. We enthusiastically await the results of Monte Carlo simulations
which will determine what energy resolution is necessary to observe the ββ(0ν)
peak of 100Mo. Armed with these analytical equations, the appropriate dimen-
sions and design for a detector can be quickly and effectively evaluated once the
desired energy resolution is known.

4PerkinElmer Optoelectronics, available at http://opto.perkinelmer.com/Downloads/c30902e.pdf
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Figure 1: The Detector Geometry. An event ocurs at point E. An arbitrary
pixel on the surface of the detector sphere is a distance k away from the event,
and makes an angle α with the event axis OE.
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Figure 2: The area relationship between dA′ and dA. dA′ is the area
through which the photon flux is N

4πk2 . The area dA mapped out on the surface
of the sphere sees a smaller photon flux by a factor of cos (δ).

11



Figure 3: Probability as a function of r. The probability of detection
p decreases as the event gets closer to the edge of the sphere, because the
probability that a pixel is hit by multiple photons increases.
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Figure 4: Probability of Detection as a function of n. As this graph
shows, the probability for detection decreases fairly linearly as the number of
previous photons n increases. Thus, we can use the value at N

2 to approximate
the average probability for each photon in an event of N photons.
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Figure 5: Mean Number of Hits vs. N . The mean number of hits seen
by the detector varies with the number of source photons N . The slope of this
graph is the differential coefficient α which relates number of hits to number of
detected photons for a particular value of N .
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Figure 6: Line Width as a function of r. As the event gets closer to the
edge, the line width of the energy distribution gets larger, and energy resolu-
tion subsequently gets worse. This graph shows that in an ideal situation, the
detector proposed would have less that 0.1% energy resolution for events as far
off-center as 3m, and better than 0.5% as far out as 4.7m off-center.
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Figure 7: Probability Distribution and Gaussian Approximation. This
shows the probability distribution for the mean number of hits (upper curve),
as well as the Gaussian approximation used to model that distribution (lower
curve). The approximation permits rapid computer evaluation of the convolu-
tion. This plot is for r = 0, R = 5, N = 104, M = 106.
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Figure 8: Line Width as a function of r. This is a more realistic graph of
Line Width vs. r, because it incorporates a source distribution of mean N and
standard deviation

√
N . The energy resolution is about 1% as far out as 4m.
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Figure 9: Photon Flux vs θ. The hit density of an event as a function of
θ should closely resemble the above graphs of Photon Flux vs. θ. If the hit
density of an event in the detector is graphed this way, it can be compared
to the above graphs to determine the position of the event. Background due
to dark counts should be constant in θ, making it possible to subtract out the
constant background function from a graph of Hit Density vs. θ. These graphs
were generated using equation (8).
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Figure 10: Energy Resolution Data. This is the data from which the energy
resolution graphs were calculated. The line width was determined through a
Maple procedure, and then converted to energy (and energy resolution) in Excel,
with the assumption that a 3MeV event produces 104 photons.
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