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Baryogenesis

There are more baryons than anti-baryons in the Universe:

YB ≡ nB − nB̄
s

≃ 0.9× 10−10.

Two possible scenarios leading to this fact:

The Universe started from an initial state with ∆B = nB − nB̄ > 0.
However, two issues arise: First, we need an extremely fine-tuned initial ∆B to
explain the observed YB . Second, inflation would exponentially dilute any amount of
initial baryon number.

The Universe started from a state with nB = nB̄ , and generated baryon asymmetry
through dynamical processes. This scenario is called Baryogenesis.

Sakharov’s conditions for baryogenesis A.D.Sakharov, 1967:

1 Baryon number violation

2 C, CP violation

3 Out of thermal equilibrium
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Sakharov’s conditions

Baryon number violation — Of course, we are generating baryon number asymmetry.

C, CP violation
C : L → R̄,R → L̄

CP : L → L̄,R → R̄

/CP : ∆L = nL − nL̄ ̸= 0, ∆R = nR − nR̄ ̸= 0

/C : ∆L ̸= −∆R ⇒ ∆L +∆R ̸= 0

Out of thermal equilibrium — Baryons and anti-baryons have equal masses, and thus
have equal equilibrium numbers nB ∼ exp(−MB/T ). If the baryon number violation
process occurs in equilibrium, the asymmetry would eventually be washed out.
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Electroweak Baryogenesis (EWBG)

Now we focus on a highly motivating mechanism: Baryon asymmetry generated during
the electroweak phase transition: ⟨h⟩ : 0 → v .
Sakharov’s conditions for baryogenesis:
1. Baryon number violation 2. Out of thermal equilibrium 3. C, CP violation

Weak sphaleron, ∆B(L) ̸= 0,
∆(B − L) = 0

Bubble nucleation during first
order EWPT. m = 0: symmetric
phase, m > 0: broken phase.

CP-violating scattering of the
fermions with the bubble wall.
Reflection rates RL ̸= RL̄.

CP asymmetry (nL − nL̄) generated through scattering would bias the
sphaleron to generate more baryons than anti-baryons.
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Electroweak Baryogenesis (EWBG)

We performed a real-time lattice simulation of asymmetry generation through fermion
scattering with the bubble wall in 1+1D.

Marcela Carena, Ying-Ying Li, TO, Hersh Singh, 2412.10365

Sakharov’s conditions for baryogenesis:
1. Baryon number violation 2. Out of thermal equilibrium 3. C, CP violation

Sphaleron, ∆B(L) ̸= 0,
∆(B − L) = 0

Bubble nucleation during first
order EWPT

CP-violating scattering of the
fermions with the bubble wall.
Reflection rates RL ̸= RL̄.

Why real-time? — Applicable to non-equilibrium processes.

Why lattice? — To address the uncertainties in the conventional perturbative
calculations.
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Conventional Calculations of CP Asymmetry

Equation of motion: Dirac equation with a spatially varying complex mass

i /∂Ψ(t, x)−m(z)PRΨ(t, x)−m∗(z)PLΨ(t, x) = 0.

Two perturbative approaches to calculate the CP-violating effects:

Semi-classical approach based on WKB approximation.
In the “thick” wall limit, Lw ≫ λ ∼ 1/T , the dynamics of the fermion near the

bubble wall can be approximated as the WKB ansatz Ψ ∼ e−iEw t+i
∫ z p(z′)dz′ . The

impact of the bubble wall on the fermion can be described by a classical force (to
the leading order of spatial derivatives):

Fz = − (|m|2)′

2Ew
+ ssk0

(
|m|2θ′

)′
2EwEwz

ssk0 = +1(−1) for L(L̄), encoding CP violation. The particle distribution near the
bubble wall can be solved from the Boltzmann equation

(vg∂z + Fz∂kz ) fi = Ci [fi , fj , ...]

M. Joyce, T. Prokopec, N. Turok, 9410282

J. Cline, M. Joyce, K. Kainulainen, 0006119
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Conventional Calculations of CP Asymmetry

Another perturbative approach:

VEV-insertion approximation: Treat the mass term as perturbation that mixes the
left and right-handed components. Calculate the reflection coefficient of the
left-handed particle reflected into right-handed RLR as expansion in m(z):

RLR = −i

∫
dz1GR(−z1)[−m∗(z1)]GL(z1)

−i

∫
dz1dz2dz3GR(−z3)[−m∗(z3)]GL(z3 − z2)

m(z2)GR(z2 − z1)[−m∗(z1)]GL(z1) + ...

where GL,R are the Green’s functions.

P. Huet, E. Sather, 9404302

P. Huet, A. E. Nelson, 9506477
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Conventional Calculations of CP Asymmetry

Limitations of the two approaches:

Semi-classical approach: Limited to thick wall scenario where quantum effects are
negligible.
VEV-insertion approach: Limited to light mass m/T ≪ 1, which is invalid near the
broken phase for a strong first-order phase transition with v/T > 1.

Moreover, numerical calculations found an order-of-magnitude discrepancy between the
baryon numbers predicted by the two approaches for typical EWBG models (CK and FH
in the plots both refer to the semi-classical approach):

J. Cline, K. Kainulainen, 2001.00568 P. Basler, M. Mühlleitner, J. Müller, 2108.03580
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Symmetry Breaking by the Complex Mass Term

We use the Hamiltonian formalism. The Hamiltonian of the fermion with a complex mass

profile m(x) = |m(x)|e iθ(x)γ5

is given by

H = −iψγ j∂jψ + |m(x)|ψ
[
cos θ(x) + i sin θ(x)γ5

]
ψ.

To discuss what discrete symmetry is broken by this Hamiltonian, we first define charge
conjugation as

CϵγµC
−1
ϵ = ϵ(γµ)

T , (ϵ = ±)

Cϵγ5C
−1
ϵ = η5(γ5)

T , η5 = (−1)
D
2

The spinors transform as

Cϵ : ψ → Cϵψ
T
, ψ → ϵψTC−1

ϵ

One can check that the kinetic term is invariant under charge conjugation

ψγµ∂µψ
Cϵ−−−→ ϵψ(C−1

ϵ γµCϵ)
T∂µψ = ψγµ∂µψ

While the mass term may not be invariant, and a fermion bilinear in general transforms as

ψΓψ
Cϵ−−−→ ψ(−ϵC−1

ϵ ΓCϵ)
Tψ
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Symmetry Breaking by the Complex Mass Term

We define parity transformation as

P :

{
ψ(t, x) → κγ0ψ(t,−x)

ψ(t, x) → ψ(t,−x)(κγ0)
†

where κ = 1 or i so that (κγ0)
2 = 1.

Again the kinetic term is always invariant under parity transformation, while the fermion
bilinear transforms as

ψΓψ
P−−→ ψγ−1

0 Γγ0ψ.

The transformations of the fermion bilinears under charge conjugation and parity
transformation are summarized as

Γ 1 γ5 γµ γµγ5

Cϵ −ϵ −ϵη5 −1 η5

P 1 −1 (−1)µ −(−1)µ

Marcela Carena, Ying-Ying Li, TO, Hersh Singh, 2412.10365

M. Stone, 2009.00518
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Symmetry Breaking by the Complex Mass Term

Γ 1 γ5 γµ γµγ5

Cϵ −ϵ −ϵη5 −1 η5

P 1 −1 (−1)µ −(−1)µ

The real and imaginary parts of the mass term, ψψ and ψγ5ψ, transform differently in

different dimensions [η5 = (−1)
D
2 ]:

3+1D: η5 = +1, ψψ
CϵP−−−→ −ϵ, ψγ5ψ

CϵP−−−→ ϵ

1+1D: η5 = −1, ψψ
Cϵ−−−→ −ϵ, ψγ5ψ

Cϵ−−−→ ϵ

Therefore, the complex mass term breaks CP symmetry in 3+1D, while breaks C
symmetry in 1+1D.
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Observables for Symmetry Breaking

Ideal symmetry breaking observables: Vanish in the initial state which is symmetric under
C or CP. Evolve to be non-zero as symmetry breaking occurs when the fermion hits the
bubble wall

⟨O⟩t=0 = 0 → ⟨O⟩tf ̸= 0

O can be any operator that is odd under the corresponding symmetry.

Γ 1 γ5 γµ γµγ5

Cϵ −ϵ −ϵη5 −1 η5

P 1 −1 (−1)µ −(−1)µ

The chiral charge density j0
A ≡ ψγ0γ5ψ is CP-odd in 3+1D, and can be used to

measure CP asymmetry in 3+1D EWBG.

The vector charge density (particle number density) j0
V ≡ ψγ0ψ is C-odd in 1+1D,

and will be used to measure C asymmetry generation in the 1+1D simulation in this
work.
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Evolution Picture

1 Prepare the initial state to be a massless Gaussian wavepacket sitting in the middle
of the symmetric phase, far from both the bubble wall and the lattice boundary.

2 Time evolve the system with the operator U(t, t + dt) = e−iHdt . Let the wavepacket
move towards the bubble wall and scatter with it. Measure the particle
(anti-particle) charge density as a function of time:

ρn,±(t) =< Ψ±(t)|ĵ0
n |Ψ±(t) > − < Ω|ĵ0

n |Ω >

3 To measure symmetry breaking, we perform the procedures above for a pair of
identical particle and anti-particle wavepackets individually, and sum up their local
charge densities to get the net charge density: ρn(t) = ρn,+(t) + ρn,−(t).

k
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Lattice Discretization

Continuum Hamiltonian

H = −iψγ j∂jψ +mψψ

Naive discretization

ψ(x = na) → χn, ∂xψ|x=na →
χn+1 − χn−1

2a

Taking periodic boundary condition, the momentum modes can be defined as

χk =
1√
N

∑
n

χn e
−ikna, k = −π

a
+ j

2π

Na
(j = 1, ...,N)

The lattice Hamiltonian

H =
∑
k

χ†
k

(
−m −i sin ka

a

i sin ka
a

m

)
χk =

∑
k

χ†
k Hk χk

For an eigenstate with energy E ,(
sin ka

a

)2

+m2 = E 2 a→0−−−→ k2 +m2 = E 2

while there are only 2 k-modes in the continuum k = ±
√
E 2 −m2, there are 4 k-modes

in the discrete Hamiltonian k = ±k0, ±(k0 +
π
a
) — Fermion doubling issue.
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Lattice Discretization

Work in the staggered fermion formalism to avoid fermion doubling issue

ψ(x) =

(
ψ1

ψ2

)
→ 1√

a

(
χ2j−1

χ2j

)
, j = 1, ...,N/2

Taking open boundary condition, the dimensionless discrete Hamiltonian is given by

Ĥ =
N−1∑
n=1

i

[
1

2
+ (−1)n|mn| sin θn

]
(χ†

n+1χn − χ†
nχn+1)−

N∑
n=1

(−1)n|mn| cos θnχ†
nχn

with mn ≡ am(an − aNc), θn ≡ θ(an − aNc), where Nc is the site of the wall center.

This Hamiltonian can be mapped to a spin chain by Jordan-Wigner transformation

χn =

(∏
s<n

iσz
s

)
σ+
n , χ†

n =

(∏
s<n

−iσz
s

)
σ−
n

which can be directly implemented on a quantum computer in the future.
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Lattice Discretization

We use the tensor network methods for the numerical simulation — formulate the
operators as matrix product operators (MPO), and the quantum states as matrix
product states (MPS) ITensor documentation.

Time evolution — Trotterization. Decompose the Hamiltonian into the neighboring
terms

Ĥ =
N−1∑
n=1

hn,n+1 + hN , hN = (−1)N+1|mN | cos θNσ
−
N σ

+
N

hn,n+1 =

[
1

2
+ (−1)n|mn| sin θn

]
(σ−

n+1σ
+
n + σ−

n σ
+
n+1)− (−1)n|mn| cos θnσ−

n σ
+
n

then decompose the time evolution operator as

e−i Ĥτ̂ ≈ e−ih1,2τ̂/2 e−ih2,3τ̂/2 · · · e−ihN−1,N τ̂/2 e−ihN τ̂

e−ihN−1,N τ̂/2 · · · e−ih2,3τ̂/2 e−ih1,2τ̂/2 +O(τ̂ 3)
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Validation

We first examine our algorithm by simulating a fermion wavepacket scattering with a real
mass profile:

|m(x)| = m0

2
[1 + tanh (x/Lw )] & θ(x) = 0

In this case, there is a precise analytic prediction of the reflection coefficient, which is
defined as the ratio of the reflected particle number Qt,± =

∫ 0

−∞ dxρ±(x , t) at the
asymptotic limit (t → ∞) to the incident particle number.
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We perform the simulations in a fixed lattice volume L = 28 with wall width Lw = 0.6 and
various lattice spacings a. The asymptotic value Q̂∞,+ is measured as the mean value of Q̂t,+ in

the yellow band of (b). The continuum limits of Q̂∞,+ agree with the analytic predictions.
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Scale Separation

One of the most challenging aspects of these simulations is that we need the wavepacket
to be localized in both position and momentum space.

In the position space, we want the wavepacket to be far away from both boundaries
of the symmetric phase (x ∈ [−L/2, 0]):

0 ≪ |x0 ± σx | ≪
L

2

In the momentum space, we want to suppress both negative (left-moving)
momentum modes and large momentum modes that are associated with large lattice
artifacts (ensure validity of sin ka ∼ ka):

0 ≪ |k0 ± σk | ≪
π

2a

In practice we choose x0 = −L/4, therefore σx ≪ L/4. Using σxσk = 1/2 for
Gaussian distribution, we obtain the following condition for k0 and σk :

π

2a
≫ k0 ≫ σk ≫ 2

L
.
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Symmetry Breaking

To simulate charge symmetry breaking, we use the following mass and phase profiles

|m(x)| = m0

2
[1 + tanh (x/Lw )] , θ(x) =

θ0

2
[1 + tanh (x/Lw )]
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x

ρ±(x)

Φ

Reflected wavepackets

Asymmetries generated in the reflection coefficient R±(k) = |R±(k)|e iϕ±(k):

Magnitude asymmetry |R+(k)| ̸= |R−(k)| — measured by the net reflected particle
number Q̂∞ ≡ Q̂∞,+ + Q̂∞,−.

Phase asymmetry ϕ+(k) ̸= ϕ−(k) — measured by the spatial displacement between
the particle and anti-particle wavepacket centers Φ = ϕ′

+(k0)− ϕ′
−(k0).
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Magnitude Asymmetry

Again, we run the simulations in a fixed lattice volume L = 28 with wall width Lw = 0.6,
varying lattice spacing a and the phase parameter θ0 (k0 is fixed at 1).
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Magnitude asymmetry gets smaller at larger θ0 — Does it mean smaller asymmetry?
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There is still significant asymmetry reflected in the displacement between the
wavepackets — Phase asymmetry is a better observable at larger θ0!
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Phase Asymmetry

We show that the phase asymmetry is related to the product of the particle and
anti-particle number densities in the following way:

−
∫ 0

−∞
dx ρ+ ρ− = A e−BΦ2

which can be used to derive Φ from the measurement of ρ±.

L = 28, Lw = 0.6, k0 = 1.00

𝜃0 = 𝜋/12, a = 1/8

x
−10 −5 0 5 10

t

0

10

20

𝜌n(t)

−0.2

−0.1

0.0

0.1

0.2

t
0 10 20

Φ̂
t

0.0

0.2

0.4

0.6

𝜃0 = 𝜋/12

𝜃0 = 3𝜋/12, a = 1/8

x
−10 −5 0 5 10

t

0

10

20

𝜌n(t)

−0.2

−0.1

0.0

0.1

0.2

t
0 10 20

Φ̂
t

0.0

0.5

1.0

𝜃0 = 3𝜋/12

a
0.0 0.1 0.2

Φ̂
∞

0.0

0.5

1.0

𝜃0/𝜋
0.0 0.2 0.4

Φ̂
∞

0.0

0.5

1.0

(a) (b)

(c) (d)

a = 1/8

a = 1/6

a = 1/5

a = 1/4

a = 1/8

a = 1/6

a = 1/5

a = 1/4

𝜃0 = 0

𝜃0 = 𝜋/12

𝜃0 = 2𝜋/12

𝜃0 = 3𝜋/12

𝜃0 = 4𝜋/12

𝜃0 = 5𝜋/12

𝜃0 = 6𝜋/12 a→0, linear

22 / 30



Summary

We perform a real-time lattice simulation of fermion-bubble scattering during a first
order phase transition by which the fermion obtains a complex mass in 1+1D. We
analyze the symmetry breaking in different dimensions and propose the appropriate
observables.

We perform simulations with different lattice spacings and extrapolate to the
continuum limit. In the real mass case, the continuum limit of the reflection
coefficient agrees very well with the analytic prediction, validating our simulation.

In the complex mass case, we define the observables that can capture the
asymmetries in the magnitude and the phase of the reflection coefficient,
respectively. In the scenario of equally strong reflections of both particle and
anti-particle, magnitude asymmetry would be suppressed and become less sensitive,
and thus it would be important to measure phase asymmetry.
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Finite Volume Effects

While lattice artifacts have been eliminated by continuum limit extrapolation, finite
volume effects remain as the dominant source of error until a systematic infinite volume
extrapolation is performed. In our work, we investigated the performance of a simple
linear extrapolation.
Magnitude and phase asymmetries in the initial state:
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Finite Volume Effects

To investigate the finite volume effects in scattering, we take the mass profile to be a
step function:

|m(x)| =

{
0 x ≤ 0

m0 x > 0
, θ(x) =

{
0 x ≤ 0

θ0 x > 0
.

No asymmetry is expected to be generated in this case since the phase in the broken
phase can be rotated away.
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Asymmetries generated from scattering with a step mass profile. Comparing the fixed volume
result with the linear infinite volume extrapolation. We see that a simple linear fit is not well
under control, sometimes would produce larger uncertainties.
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Outlooks

The scalar field is treated as a static background instead of a dynamic field in this
work. In the future, it will be meaningful to include the scalar field dynamics and
study the full phase transition/bubble expansion dynamics.
Real-time simulations of bubble dynamics: A. Milsted, J. Liu, J. Preskill, G. Vidal,

2012.07243, R. G. Jha, A. Milsted, D. Neuenfeld, J. Preskill, P. Vieira, 2411.13645

This work studies a single particle dynamics in a background field, and serves as a
proof of principle for future simulations in a thermal background and
out-of-equilibrium environments.
Possible strategy: Encode the thermal background into the Lindblad operators like
in W. A. de Jong, K. Lee, J. Mulligan, M. P loskoń, F. Ringer, X. Yao, 2106.08394
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Real-Time Simulation of the Full EWBG

Sphaleron and phase transition involve thermal effects and should be analyzed with
thermal field theory. The analysis of thermal field theory is much simplified in thermal
equilibrium, where KMS condition implies a periodicity in Euclidean time tE = T−1.
Therefore, after a Wick rotation, the time integral can be taken out from the integrated
variables, such as free energy and action, leaving a purely spatial problem.

Analytic calculation of electroweak sphaleron V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, 85

Assuming thermal equilibrium, find the field configuration (Acl, φcl) that extremizes
the static free energy

F =

∫
d3x

[
− g 2

W (T )

2
TrF 2

ij + (Diφ)
†(Diφ) + λ(T )

(
φ†φ− v 2(T )

2

)2 ]
The free energy of this configuration is

F ∼ 2MW (T )/αW (T )B(λ(T )/αW (T ))

where B(λ, αW ) ∼ O(1). The sphaleron rate is Γsph ∼ exp(−F/T ).
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Real-Time Simulation of the Full EWBG

Analytic calculation of nucleation rate M. Dine, R. G. Leigh, P. Huet, A. Linde, D. Linde, 92

Again due to the periodicity in thermal equilibrium, the tunneling rate
∼ exp(−S4) ≃ exp(−S3/T ). So the critical bubble profile φ(r) which will expand
and convert the false vacuum into true vacuum is found by extremizing the 3D action

S3 = 4π

∫ ∞

0

dr r 2

[
1

2

(
dφ

dr

)2

+ V (φ(r),T )

]

The nucleation temperature is usually defined as that with S3/T ∼ 140, when there
is one bubble nucleated per Hubble time per Hubble volume.

Effective potential
In thermal equilibrium, the Fourier transform of the periodic correlation function has
discrete frequency spectrum — Matsubara modes ωn = 2nπT . The thermal
contribution to the effective potential is a summation over the Matsubara modes

V T
1 (φc) =

T

2

∞∑
n=−∞

∫
d3p

(2π)3
log
[
ω2
n + p2 +m2(φc)

]
which enters the effective potential commonly used for EWPT calculation,
Veff(φ,T ) = V0 + VCW + V T

1 .
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Real-Time Simulation of the Full EWBG

Nearly all the analytic calculations in EWBG are based on the assumption of thermal
equilibrium, despite the out-of-equilibrium nature of EWBG! To what extent are they
reliable? — Real-time lattice simulation will give the final answer.

Real-time simulation of false vacuum decay rate, e.g., D. P̂ırvu, A. Shkerin, S.

Sibiryakov, 2407.06263, reveals out-of-equilibrium effects during bubble nucleation.

Real-time simulation of sphaleron rate, e.g., J. Ambjorn, T. Askgaard, H. Porter, M.E.

Shaposhnikov, 90 (didn’t include fermions), D. Grigoriev, M. Shaposhnikov, N. Turok, 91,

A. Kovner, A. Krasnitz, R. Potting, 9907381 (included fermions).
What’s next? Sphaleron rates in general out-of-equilibrium environments?

CP asymmetry generation in fermion-bubble scattering: Our work.
Next: Develop the simulation in a thermal environment (in progress with Vincenzo
Cirigliano, Marcela Carena and Hersh Singh). Include the scalar field and gauge field
dynamics. Couple the asymmetry to the sphaleron...
One possible toy model for a full simulation of EWBG: Abelian Higgs model coupled
to fermions in 1+1D D. Grigoriev , M. Shaposhnikov, N. Turok, 92.
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Thanks!
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