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Plan of the talk

e [ntroduction to ALP and HNL

* Framework

e Cosmological evolution of HNL and ALP

e (Constraints from Cosmology and Astrophysics
 Prospects in future HNL direct search experiments

e Summary
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Axion-like particles (ALPs)

‘f.ﬂ“ Strong CP Problem —> Ogcp < 107112
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Axion-like particles (ALPs)

5}' ‘ Strong CP Problem — Ogcp < 107119
J

Solution : QCD Axions

[Peccei,Quinn ’77; Weinberg ’78; Wilczek ’78]
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Axion-like particles (ALPs)

D Ogep < 107112
T

Solution : QCD Axions

[Peccei,Quinn ’77; Weinberg ’78; Wilczek ’78]

:;  Strong CP Problem

* However, more fundamental theories such as the string theory can suggest the
presence of particles similar to axions. [Svrcek & Witten '04, Arvanitaki et al. *10]

* Hypothetical particles which are similar to QCD axions are called axion-like
particles (ALPs).

* ALPs don’t obey the mass-coupling relation [Weinberg °78, ... Borsanyi et al. ’16].

e Possible dark matter candidates [Ringwald *16].
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Heavy Neutral Leptons (HNLSs)

» Couple with the SM via active-sterile mixing (U )
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Heavy Neutral Leptons (HNLSs)

» Couple with the SM via active-sterile mixing (U )

—

| Spectrum of Phenomenon |

1. Origin of small neutrino masses
2. Dark Matter (DM)

3. Baryon Asymmetry of our
Universe (BAU)
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Heavy Neutral Leptons (HNLSs)

» Couple with the SM via active-sterile mixing (U )

=

'Experimental Observations |

—

| Spectrum of Phenomenon |
| . — ——————

1. Origin of small neutrino masses 1. Reactor Anti-neutrino anomaly
2. Dark Matter (DM) [Phys. Rev. D 83, 07300].

2. Gallium Anomaly [Phys. Rev. C 80
3. Baryon Asymmetry of our 015807].

Universe (BAU
( ) 3. Accelerator anomaly [Phys. Rev.

Lett. 110, 161801].
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Framework

SM + HNLs (V) + ALPs (a) :

L = L + iNigr, 0" Nig — (V) i L AN — —(/%R)U cNp+Ly+ Loy +h.c.

N N .
1 _ 21 _
where & =E—0aN’“‘N=—E—m alN y-N
by =1 f;l( 3 ) K}/ }/5 ¢ k=1 ]l;l NK K}/S * [S Gola et a|., ,22]
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Framework

SM + HNLs (N) + ALPs (a) :

L = L + iNigr, 0" Nig — (V) i L AN — —(/%R) it Lot Lo +h.c.

ij zR
where & él(a )N y*y<N izi N, ysN,
= —(0,a = — —my a
aNN =1fa WAIN VY50V ~ 7 N AN V50V 'S. Gola et l, '22)
Considering HNL couples only to v, :
l _
gan - = _mNUeNaNySUe
a
21 21
3aw -~ _le Nl av,Yst, = — ——M,av,ysv,
Ja Ja
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HNL decays

Majorana HNL with mass around MeV-GeV scale decays leptonically or semi-leptonically :
[A. Atre et al., ’09; P. Coloma et al., '21]

N-SM _ Z IRZ It + Z e “Ity, + Z [Vetii 4 Z Pve 4+ Z 2FP+ + Z V% 4+ Z 2FV+

I=u,r
6 2
~ ( ];M + 207]\;3 ) | N|2G2 [P. D. Bolton et al., '20]
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HNL decays

Majorana HNL with mass around MeV-GeV scale decays leptonically or semi-leptonically :
[A. Atre et al., ’09; P. Coloma et al., '21]

N-SM _ Z FVel+l Z e “Ity, + Z [Vetii 4 Z Pve 4+ Z 2FP+ Z V% 4+ Z 2FV+e"
[ V Vv

I=u,r
6 2
~ ( ];M + 207]\;3 ) | N|2G2 [P. D. Bolton et al., '20]

New decay channel for HNL N — av :

B 1 372

3
£ \°[/ 104 1 GeV
N—>ay ~ 8 6 X 10—4 a €
1 TeV |UeN|2 my
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Axionic decay channel will be dominant for

V311 -24G} 13 f2 1 7
< :
1.Gr

My

Chayan Majumdar IMP, CAS

14



Axionic decay channel will be dominant for

V311 -24G} 13 f2 1 7
< :
1.Gr

T
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0.01

~ 0010 0100
my [GGV]
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Axionic decay channel will be dominant for

V311 -24G} 13 f2 1 7
< :

My
JaGF
— _ _ 2.5 —
f,=1TeV,m, =1 keV f, =10 TeV,m, = 1 keV
va ® va
001F ]
® VvV
001} vl
® v,e l2+
e Pv
105k ® Pe
Vv
/
/
L4l MY L b L4l L -8 L4l AN | PR WY | M Y|
0.001 0.010 0.100 1 10 1OO.OOI 0.010 0.100 1 10
my [GeV] my [GeV]
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ALP decays

g
ANN
€
a = 2759aqe “ - ¢ = —iga,yeﬁgk'lokg
Nann~
g
Effective ALP-electron and ALP-photon couplings :
4
V2G| Uyl mm} V2’Ge| Uyl mjy I m?
8aee ~ ’ ga}’}’ ~ I T
1672, 327%, 12 m?
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ALP decays

Y
ANN
€
. = 2759aqe ¢ . 1€ = _igaveggkfkg
CNanA~
Y
Effective ALP-electron and ALP-photon couplings :
4
V2G| Uyl mm} V2’Ge| Uyl mjy I m?
gaee ~ 9 ga}/}/ ~ 1 +
1672, 327%, 12 m?

New decay channel for ALP a — vv

[ra—w _ 1 m]%,maerNl4 | 4my2 | 2m3
12 27 mg mg

2 2 )
1 GeV 1 keV \ [ 2.03x107° < f >
7, ~ 1 sec
my m, | Uen | 1 TeV
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Cosmological evolution of HNLs and ALPs

3

dpx Opx J d’p
——= +3H(py +py) = — = | gxE 4

Boltzmann Equations :

d ) 3
% + 3Hny = % = JgX (;Zﬂl; Clf]
[P. Gondolo et al., ’91; M. Escudero et al., ’19]
N SM N/v L a v
>:f . *\\ S
N spm N/v K a y ,
_ SM SM
v v SM
SM SM
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Abundances before BBN

Boltzmann Equations for HNL evolution :

dny — e

2 ’2 2 92 a

— 3Hny = — (oyy_smV)(y = 1) = (Oyn—aaV) <”N ! eq.2
nd

n

_ <FN—>SM>(nN — n]flq) - <FN—>a1/> (nN o n;q n§q>

a
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Abundances before BBN

Boltzmann Equations for HNL evolution :

dny ) Mg
o + 3Hny = — (Oyy_smV) (g — ”lf,q’z) — (ONN—aa?) <”1%7 -yt nqu)
na
_<FN—>SM>(nN o n]f/q) — <FN—>a1/> <nN o n]flq neq>
Boltzmann Equations for ALP evolution :
dn 5 ng
“ 4+ 3Hn, = — (0, V)02 —n%?) — (o, _ )| n2 —n —
dt 1160
N
n
_<Fa—>y1/>(na _ nch) + <FN—>cw> <nN B n](:/q n:q>
a
n m
These equations can also be expressed in terms of Yy = X and z = —X.
S
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Abundances after BBN : temperature evolution

o HNL depletes very fast before BBN = ALP abundance only decreases with time at late times.

o ALP abundance after BBN will solely be determined by their decays a — vv :

dy, Y,
tHs——=—vy,. . < 1) with Yx—-y = <FX—>Y>”§q

dz Y4 -
[A. Boyarsky et al., ’21]
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Abundances after BBN : temperature evolution

o HNL depletes very fast before BBN = ALP abundance only decreases with time at late times.

o ALP abundance after BBN will solely be determined by their decays a — vv :

= dYa Ya i "
LHAS—— =~ VYoo _
dz /a Y4 wi

Short-lived ALPs |

x

Decay shortly after the BBN

\

Number density
completely disappears

Chayan Majumdar -

— €q
Yx—y = <FX—>Y>nX
[A. Boyarsky et al., ’21]

{Long-lived ALPs |

Abundance freezes out after BBN

U

Only deplete slowly
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Abundances after BBN : temperature evolution

o Before neutrino decoupling, ALP decay rate is negligible = photon and neutrino temperature
change via adiabatic cooling. [M. Hufnagel et al., 18]

o After BBN, a — vv becomes important = neutrino temperature increases = effect on N .
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Abundances after BBN : temperature evolution

o Before neutrino decoupling, ALP decay rate is negligible = photon and neutrino temperature
change via adiabatic cooling. [M. Hufnagel et al., 18]

o After BBN, a — vv becomes important = neutrino temperature increases = effect on N .

Temperature evolution of photon Temperature evolution of neutrino !
0P,
T,  4Hp,+3H(p, +p,) dT, 12Hp, + 3H(p, + p,) + =
dt B ap?’ ape dt apv apa
ar, T, 3 o1, T 1,

[M. Escudero et al., ’18; '20]
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Abundances and interaction rates evolution

f,=1TeV,m, =1 keV

Yx-y/ n°9x [GeV]

t [s]
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Abundances and interaction rates evolution

f,=10*° TeV,m, = 1 keV

Yx-y/ %9 [GeV]

t [s] t [s]
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Constraints from Cosmology, Astrophysics
and Direct searches
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Big Bang Nucleosynthesis : HNL

e Predictions of formation of primordial element abundances = very sensitive to the
cosmological state of universe between neutrino decoupling and CMB. [F. locco et al., "09]

o Modification in neutrino bath temperature = catastrophic change in primordial element
abundances. [A. Boyarsky et al., '21]
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Big Bang Nucleosynthesis : HNL

e Predictions of formation of primordial element abundances = very sensitive to the
cosmological state of universe between neutrino decoupling and CMB. [F. locco et al., "09]

o Modification in neutrino bath temperature = catastrophic change in primordial element
abundances. [A. Boyarsky et al., '21]

Our scenario :
HNL decaying to mesons disturb initial abundances for proton and neutrons for BBN.

\

Short-lived HNLs

\

Abundances of protons and neutrons got enough time to restore their values from ACDM

\

No effect on BBN, we set a conservative limit on 7. [a Boyarskyetal., 21, A. D.
Dolgov et al., 2000, O.

Ruchayskiy et al, ’12]
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Big Bang Nucleosynthesis : ALPs

o ALP decays before neutrino decoupling via a — vv = change in neutrino bath temperature
= delaying neutrino decoupling and formation of primordial abundances.

Our scenario :

e Subsequent decays of ALPs mostly via a — yy can affect the primordial abundances — negligible in
our scenario.

Chayan Majumdar IMP, CAS

31



Big Bang Nucleosynthesis : ALPs

o ALP decays before neutrino decoupling via a — vv = change in neutrino bath temperature
= delaying neutrino decoupling and formation of primordial abundances.

Our scenario :

e Subsequent decays of ALPs mostly via a — yy can affect the primordial abundances — negligible in
our scenario.

o Even if ALPs do not decay before BBN, they still affect the abundances if they are too abundant =
would act as dark radiation and modify the Hubble rate during radiation domination era = modification
in Negi(ZppN) -

. fo?N = 2.86 = 0.15 = we set upper bound on ALP abundance at BBN by considering ANS:?N <0.2
[B. D. Fields et al., ’20]

Chayan Majumdar - IMP, CAS



Cosmic Microwave Background

e End of BBN, any particle that injects energy in primordial plasma = modify the observations of
CMB.

e Major source of energy injection is via @ — vvU : do not expect the constraints arising from CMB
anisotropies due to negligible a — yy decay rate. [C. Balazs et al., 20]

e a — vV increases the neutrino bath temperature = effect on NV .

4
CMB BBN 11 - Tl/
Ng'™® = NG -] =3.04420384.

4
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Cosmic Microwave Background

End of BBN, any particle that injects energy in primordial plasma = modify the observations of
CMB.

Major source of energy injection is via a — vv : do not expect the constraints arising from CMB
anisotropies due to negligible a — yy decay rate. [C. Balazs et al., 20]

e a — vV increases the neutrino bath temperature = effect on NV .

4
CMB BBN 11 - TV
Ng'™® = NG - ) =3.04420384.

4

Furthermore, if ALPs become non-relativistic at recombination and 7, > 10!’ sec = they would
contribute as dark matter.

We can also constraint the parameter space considering Qpy 2> ~ 0.12 .
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Supernovae : SN1987A

« Core of Supernovae (SN) is very hot and dense with 7'~ 30 MeV.
e Weakly interacting particles can free-stream and escape the core = contributing to SN cooling.

e Primary source of such cooling is neutrinos (with £, < 30 MeV) : Neutrino burst observed for
SN1987A by various water Cherenkov detectors. [KAMIOKANDE-II collaboration, ’87; Y. Totsuka et al., ’88]
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Supernovae : SN1987A

« Core of Supernovae (SN) is very hot and dense with 7'~ 30 MeV.
e Weakly interacting particles can free-stream and escape the core = contributing to SN cooling.

e Primary source of such cooling is neutrinos (with £, < 30 MeV) : Neutrino burst observed for
SN1987A by various water Cherenkov detectors. [KAMIOKANDE-II collaboration, ’87; Y. Totsuka et al., ’88]

e HNLs and ALPs can also contribute to SN cooling = very constrained from SN1987A luminosity
measurements. [A. D. Dolgov et al., '00; G. M. Fuller et al., ’09; L. Mastrototaro et al., 20 ...]

e Secondary decays of HNL and ALP into neutrinos = additional flux of neutrinos over the normal
burst = more constrained as compared to SN cooling. [D. F. G. Fiorillo et al., ’23; V. Syvolap ’23]
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Supernovae : SN1987A

« Core of Supernovae (SN) is very hot and dense with 7'~ 30 MeV.
e Weakly interacting particles can free-stream and escape the core = contributing to SN cooling.

e Primary source of such cooling is neutrinos (with £, < 30 MeV) : Neutrino burst observed for
SN1987A by various water Cherenkov detectors. [KAMIOKANDE-II collaboration, ’87; Y. Totsuka et al., ’88]

e HNLs and ALPs can also contribute to SN cooling = very constrained from SN1987A luminosity
measurements. [A. D. Dolgov et al., '00; G. M. Fuller et al., ’09; L. Mastrototaro et al., 20 ...]

e Secondary decays of HNL and ALP into neutrinos = additional flux of neutrinos over the normal
burst = more constrained as compared to SN cooling. [D. F. G. Fiorillo et al., ’23; V. Syvolap ’23]

« N — av — 3v : SN limits from Cherenkov detectors on traditional HNLs can be directly applied
= applied for larger mixing angles.

Chayan Majumdar IMP, CAS
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Supernovae : SN1987A

e Secondary neutrino flux from keV-scale ALP decay is smaller as compared to HNL decays
which can escape the SN core.

e Heavy HNLs cannot escape = SN constraints from the production of ALPs are stronger for
my > 400 MeV. [K. Akita et al., 24]

e 2., < 107" = weak limits for heavier HNLs and larger mixing.

o Additional constraints from secondary decays of HNLs and/or ALPs to photons = very weak
In our scenario for the considered mass range.
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Supernovae : SN1987A

e Secondary neutrino flux from keV-scale ALP decay is smaller as compared to HNL decays
which can escape the SN core.

e Heavy HNLs cannot escape = SN constraints from the production of ALPs are stronger for
my > 400 MeV. [K. Akita et al., 24]

e 2., < 1077 = weak limits for heavier HNLs and larger mixing.

o Additional constraints from secondary decays of HNLs and/or ALPs to photons = very weak
In our scenario for the considered mass range.

* ALP production at core of white dwarfs and RGB stars can lead to strong cooling with
Lree ™ 10~1° = negligible constraint in the parameter space considered. [L. D. Luzio et al., '20]

Chayan Majumdar IMP, CAS

39



Supernovae : SN1987A

e Secondary neutrino flux from keV-scale ALP decay is smaller as compared to HNL decays
which can escape the SN core.

e Heavy HNLs cannot escape = SN constraints from the production of ALPs are stronger for
my > 400 MeV. [K. Akita et al., 24]

e 2., < 1077 = weak limits for heavier HNLs and larger mixing.

o Additional constraints from secondary decays of HNLs and/or ALPs to photons = very weak
In our scenario for the considered mass range.

* ALP production at core of white dwarfs and RGB stars can lead to strong cooling with
Lree ™ 10~1° = negligible constraint in the parameter space considered. [L. D. Luzio et al., '20]

* Long-lived ALPs that survive after recombination may still be observable today through their
decay products = can be probed in observations of extra-galactic background light (EBL) or
via X-rays with 8ayy ~ 107 Gev ! = negligible. [D. Cadamuro et al., "12; C. Balazs et al.,

20]
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Parameter space with m,
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Impact on direct HNL searches

« Future HNL searches, based on long-lived particle searches, will probe small U, approaching
the seesaw expectation.

 Prominent examples : PIONEER, NA62, DUNE, SHiP, FCC-ee ...

* Near detector (ND) of DUNE is located at a distance of L = 574 m from HNL production point and
a depth of AL =5 m along the beam axis.

Primary Beam Enclosure

Apex of Embankment

MI-10 Point of Extraction

Target Hall

Near Detector Absorber Hall SOBABISK Primary Beam

Service Building Service Building Service Building

DUNE collaboration
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Prospects in DUNE

Nsig = Np X Br(P — N) X Br(N — charged) X €se0 [P D. Bolton et al., ’22]

Geometrical efficiency factor :

myI 'L myI[ AL
€ge0 = EXp | — n R 1 —Exp |- Sl
PN, PN,

Ngo  Br'(N — charged) €geo

N B Br(N — charged) €geo

ig
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Prospects in DUNE

Nsig = Np X Br(P — N) X Br(N — charged) X €se0 [P D. Bolton et al., ’22]

Geometrical efficiency factor :

myI 'L myI[ AL
€ge0 = EXp | — n R 1 —Exp |- Sl
PN, PN,

Ngo  Br'(N — charged) €geo

Niig ~ Br(N — charged) €geo

6’60 m I myl VAL
= —Exp |——>I'(N = av)L| — for shallow detector depth ——~— <« 1
€geo pNZ l—‘N pNZ

N,i | m |

= —= = Exp [——TI'(N - av)L
Nsig i pNZ 1
Chayan Majumdar IMP, CAS

45



Prospects in DUNE

Nsig = Np X Br(P — N) X Br(N — charged) X €se0 [P D. Bolton et al., ’22]
Geometrical efficiency factor :

myI 'L myI[ AL
€ge0 = EXp | — n R 1 —Exp |- Sl
PN, PN,

Ngo  Br'(N — charged) €geo

Niig ~ Br(N - charged) €geo
€oco m | my vAL
= =Exp |[——T(N - av)L| — for shallow detector depth ——— « 1
€geo pNZ 1—‘N pNZ
N  m ]
= —= = Exp |——T'(N - av)L
Nsig i pNZ 1

m
For longer decay lengths as long as —NF(N — av)L < 1 = we expect same sensitivity for DUNE as in
Pn

4

the standard SM+HNL scenario.
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Prospects in DUNE and NAG2

10°¢ 1070 p——rrrrr
i DUN
1077 1077 e
107° 1078E
o 107° o 1077 =
=) i = '
10_1O§ 10—10 E_
10—11 ;_ 10—11 ;_
10—12; 10-12;_
....1 - ...“‘.‘“‘iio L , 10—13 3. Ll 2. . ||||||I_1 L ..i .1,10 ! ,
10 10~ 10~ 10 10
mpy [GGV]

10—13 L1 T L1 1|
1073 1072 107

* NAGB2 experiment used secondary 75 GeV hadron beam containing a fraction of Kaons and has been able to probe
the decays K+ — [T N = single detected track of the charged lepton and a peak in its missing mass distribution.

[K. Dias, '22]
e This experiment is currently insensitive to the HNL decays = presence of N — av will not affect the sensitivity, but

future beam-dump configuration will have same prospect as of DUNE.

IMP, CAS
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Summary

* We explore a framework with MeV-GeV scale HNLs and keV scale ALPs,
introducing additional decay channels for both.

* The axionic decay channel of HNL dominates over its Standard Model modes and
plays a key role in shaping its cosmological evolution.

* We focus on scenarios where HNL decays before BBN and ALP decays after BBN,
ensuring minimal impact on primordial element abundances.

e Cosmological and astrophysical constraints bound the parameter space, but viable
regions remain testable in future experiments like DUNE and NAG2.

Chayan Majumdar IMP, CAS

48



Thank You!

Comments, Ruestions, Suggestions!!!
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Benchmark values

Scenario | my [GeV] |U.n|? fao [TeV] m, [keV]
1 10~1 10—10 1 1
2 10—0.4 10—9.2 102.5 1
3 - - 1 10~2
4 - - 10%° 102

Chayan Majumdar IMP, CAS

50



HNL lifetime
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Thermally averaged interaction density

1(2)
Kz(Z)

Vx— Yi... — = €Q(Z)

6474

min

= d \/E&(S)K ﬁ ds, 6(s) = 2so(s) A(1,m2 /s, mz/s)
Yx . x,-Y,Y, 1 T ’ by 195 Ty,
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