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Shortcomings of the Standard Model
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While being the most successful scientific model ever, the Standard Model has 
some major shortcomings:

• Fails to explain gravity
• Fails to explain most of the mass and energy of the universe (only predicts ~ 

5%  of it)
• Fails to explain neutrino mass and oscillation.
• Fails to explain the matter-antimatter asymmetry.

How should we search beyond the Standard 
Model to explain these shortcomings?



Going Beyond
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1. High-energy route 2. High-precision low-energy route

https://cds.cern.ch/record/628469 By Marekich - Own work (vector version of PNG image), CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=21701588
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2. Search for phenomena 
not predicted by the 
Standard Model.



The Need for Nuclear Theory

14

In all cases, nuclear theory inputs are required in order to interpret experimental 
results:

• Superallowed  decay: Corrections to Standard Model  and .

• : Nuclear matrix elements .
• Electric Dipole Moment: The nuclear Schiff Moment.

• Dark Matter Scattering: WIMP Scattering structure factor .
• …

β δNS δC
0νββ M0ν

SA
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The Need for Nuclear Theory

15

Most calculations so far rely on phenomenological 
nuclear models with uncontrollable approximations, 

i.e. uncertainty quantification is really difficult . 

 

In most cases, the largest source of uncertainty on 
experimental results/limits is from nuclear theory 

inputs.

⇒



Nuclear Theory Blur
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Goal of the talk
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Show how, by using ab initio methods that rely 
on systematically improvable expansions rather 
than nuclear models, a coherent picture can be 
achieved for BSM observables using  as 
an example.

0νββ



 vs 2νββ 0νββ
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The Nature of the Neutrino Puzzle
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   The classic picture: The Dirac neutrino



The Nature of the Neutrino Puzzle
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   The classic picture: The Dirac neutrino

The Majorana neutrino 



Why Majorana Neutrinos?
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▪ The neutrinos are the only neutral fermions: only 
candidates. 
▪ Explains why we only observe left-handed neutrinos 

and right-handed anti-neutrinos. 

▪ Gives natural explanation to the small neutrino 
masses via the seesaw mechanism.



The Black Box Theorem (Schechter & Valle 1982)

23

   
Assuming only that: 
▪ Quarks and electrons are massive. 
▪ The standard left-handed weak interaction 

exists. 

Loop corrections for any mechanism require 
a neutrino Majorana mass term. Figure from JHEP 1106:091,2011



The Black Box Theorem (Schechter & Valle 1982)

24

   
Assuming only that: 
▪ Quarks and electrons are massive. 
▪ The standard left-handed weak interaction 

exists. 

Loop corrections for any mechanism require 
a neutrino Majorana mass term. Figure from JHEP 1106:091,2011

Observation of Neutrinos are Majorana0νββ ⇒
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Status of -decay Matrix Elements0νββ
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Values from Engel and Menéndez, Rep. Prog. Phys. 80 046301 (2017); Yao, Sci. Bull. 10.1016 (2020); Brase et al, Phys. Rev. C 106, 034309  (2021)



Status of -decay Matrix Elements0νββ
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Values from Engel and Menéndez, Rep. Prog. Phys. 80 046301 (2017); Yao, Sci. Bull. 10.1016 (2020); Brase et al, Phys. Rev. C 106, 034309  (2021)

All models missing essential physics! 

Impossible to assign theoretical uncertainties!
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• Obtaining a result:

NME = ⟨ψf |O |ψi⟩

List of Challenges
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• Obtaining a result:




• Deriving an expression for the nuclear potential

• Solving the nuclear many-body problem

• Deriving operators consistently with the nuclear interactions

NME = ⟨ψf |O |ψi⟩

List of Challenges



Reproduces symmetries of low-energy QCD using nucleons as fields and mesons as force carriers.

30

-EFTχ
Expansion order by order of the nuclear forces

NN 3N 4N

LO
(Q/⇤�)0

NLO
(Q/⇤�)2

N2LO
(Q/⇤�)3

N3LO
(Q/⇤�)4

+ ... + ...

+ ...

The different low energy coupling 
constants (LECs) are fitted to few-
nucleon data to absorb the effect of 
higher order terms



31

The VS-IMSRG 
Valence-Space In Medium Similarity Renormalization Group

Bare Hamiltonian Valence-space is 
decoupled

Core is decoupled

Ĥ(0) Ĥ(s) = eΩc(s)Ĥ(0)e−Ωc(s)
Ĥ(s) = eΩv(s)Ĥce−Ωv(s)

Ĥc = eΩc(∞)Ĥ(0)e−Ωc(∞)
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The VS-IMSRG 
Valence-Space In Medium Similarity Renormalization Group

Bare Hamiltonian Valence-space is 
decoupled

Core is decoupled

Ĥ(0) Ĥ(s) = eΩc(s)Ĥ(0)e−Ωc(s)
Ĥ(s) = eΩv(s)Ĥce−Ωv(s)

Ĥc = eΩc(∞)Ĥ(0)e−Ωc(∞)

Trunctations 
• emax: Truncations for 1-body states. Is given by 2n+l. 
• E3max: Truncations for 3-body forces. Optimally E3max = 3 x emax. 
• IMSRG(2) : All operators are truncated at the 2-body level.
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The Ab Initio Revolution
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A more complete approach based on EFT allows to find corrections to these 
operators:


EFT Corrections to the Operator

[T0ν
1/2]−1 = g4

AG0ν |M0ν
LR+M0ν

SR+M0ν
usoft+M0ν

loops |2 (
mββ

me )
2

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

Figure courtesy of L. Jokiniemi
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A short-range contact operator previously thought to be at higher order is 
promoted to first order for renormalization:



M0ν
SR = − 2gννM0ν

CT

The Short-Range Contact Operator
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A short-range contact operator previously thought to be at higher order is 
promoted to first order for renormalization:



M0ν
SR = − 2gννM0ν

CT

The Short-Range Contact Operator

Unknown coupling constants.

Method by Cirigliano et al. 
(JHEP05(2021)289) allows to 
extract this coupling for ab 
initio method with 30% 
uncertainty for each nuclear 
interaction.
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A short-range contact operator previously thought to be at higher order is 
promoted to first order for renormalization:



M0ν
SR = − 2gννM0ν

CT

The Short-Range Contact Operator

Unknown coupling constants.

Method by Cirigliano et al. 
(JHEP05(2021)289) allows to 
extract this coupling for ab 
initio method with 30% 
uncertainty for each nuclear 
interaction.

Contact operator regularized with non-local regulator matching the 
nuclear interaction used:

M0ν
CT = ⟨0+

f |
RNucl

8π3 ( mNg2
A

4f 2π )2exp( − ( p
Λint

)2nint)exp( − ( p′ 

Λint
)2nint) |0+

i ⟩
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Results in Heavy Nuclei 

Belley, et al., arXiv:2307.15156 (2023) 

https://arxiv.org/abs/2307.15156
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• Obtaining a result:




• Deriving an expression for the nuclear potential ( -EFT)

• Solving the nuclear many-body problem (VS-IMSRG)

• Deriving operators consistently with the nuclear interactions (EFTs)

NME = ⟨ψf |O |ψi⟩
χ

List of Challenges



40

• Obtaining a result:




• Deriving an expression for the nuclear potential ( -EFT)

• Solving the nuclear many-body problem (VS-IMSRG)

• Deriving operators consistently with the nuclear interactions (EFTs)


• Obtaining a reliable result:

• Uncertainty Quantification

NME = ⟨ψf |O |ψi⟩
χ

List of Challenges



Uncertainty quantification

41



42

Recall that the nuclear potential depends  on a set of LECs :




that are fitted to NN and few-nucleon data, i.e. each LEC has an uncertainty  
associated with it.

α
M0νββ(α) = ⟨ψf(α) |O |ψi(α)⟩

δα

Propagating the LECs Error
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that are fitted to NN and few-nucleon data, i.e. each LEC has an uncertainty  
associated with it.

α
M0νββ(α) = ⟨ψf(α) |O |ψi(α)⟩
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Propagating the LECs Error

How to propagate  to ?
δα δM0νββ
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Recall that the nuclear potential depends  on a set of LECs :




that are fitted to NN and few-nucleon data, i.e. each LEC has an uncertainty  
associated with it.

α
M0νββ(α) = ⟨ψf(α) |O |ψi(α)⟩

δα

Propagating the LECs Error

How to propagate  to ?
δα δM0νββ

Bayesian Statistics!




45

Bayesian Approach

prob(y |yk, I) ∝ prob(yk |y, I) × prob(y | I)

We read  as 
probability of A given B

prob(A |B)
Value of the 

nuclear matrix 
elements

(what we are 
interested in)

Different values 
obtained with 

different 
interactions/

methods

Any other relevant 
information we have 

beforehand

Posterior distribution
Probability distribution for the 
final value given the data and 
our previous knowledge (what 
we want to obtain).

For finite samples, we use 
sampling/importance 
resampling to obtain the final 
PDF.

Likelihood
Probability that this sample gives a 
result that is representative of 
experimental values.

Chosen to be a multivariate normal 
centred at the experimental value for 
few observables we have data on 
(calibrating observables).

Prior
Assume a uniform prior for low 
energy constants of natural size. 
Then use history matching to 
remove implausible samples from 
the set. Assume each of the 
remaining samples to be as likely 
as the others.



Procedure for UQ in the Bayesian Approach
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Procedure for UQ in the Bayesian Approach
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The catch 

Need to be able to compute the 
observables for all the non-

implausible samples. 

Due to the large cost of many-
body methods, this becomes 

quickly infeasible as the number 
of samples grows.



Emulators for Many-Body Methods

48

There are two ways to build an emulator for nuclear physics:

1. Physics driven
• Incorporates some knowledge about the 

physics into the model.
• Requires little data to be trained.
• Is limited to the purpose it was 

constructed for.

E.g. Eigenvector continuation emulator for 
the Coupled Cluster method.

1. Physics driven
• Incorporates some knowledge about the 

physics into the model.
• Requires little data to be trained.
• Is limited to the purpose it was 

constructed for.

E.g. Eigenvector continuation emulator for 
the Coupled Cluster method, Parametric 
matrix models.
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Emulators for Many-Body Methods

51

There are two ways to build an emulator for nuclear physics:

1. Physics driven
• Incorporates some knowledge about the 

physics into the model.
• Requires little data to be trained.
• Is limited to the purpose it was 

constructed for.

E.g. Eigenvector continuation emulator for 
the Coupled Cluster method, Parametric 
matrix models.

2. Data driven
• Completely agnostic to the problem it is 

solving.
• Requires large amount of data to be 

trained.
• Can be applied to anything as long as 

there is sufficient data.

E.g. Neural networks, Gaussian processes.



Using Gaussian Process as an Emulator
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•Idea behind Gaussian Process regressions is to assume that the distribution of the observable we want 
to fit is Gaussian:

where  is a mean function and  is the covariance matrix between the inputs.

•Want to infer the distribution of potentially unobserved Y* points from the observed points Y. This can be 
done via a property of Gaussian distribution called Conditioning, i.e.:

.

f(x) = 𝒩(μ, K(x, x))
μ K(x, x)

PY*|Y ∼ 𝒩 (μ*Y + ΣX*XΣ−1
XX(Y − μY), ΣX*X* − ΣX*XΣ−1

XXΣXX*)



Using Gaussian Process as an Emulator
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•Idea behind Gaussian Process regressions is to assume that the distribution of the observable we want 
to fit is Gaussian:

where  is a mean function and  is the covariance matrix between the inputs.

•Want to infer the distribution of potentially unobserved Y* points from the observed points Y. This can be 
done via a property of Gaussian distribution called Conditioning, i.e.:

.

f(x) = 𝒩(μ, K(x, x))
μ K(x, x)

PY*|Y ∼ 𝒩 (0+ΣX*XΣ−1
XX(Y−0), ΣX*X* − ΣX*XΣ−1

XXΣXX*)
Normalizing inputs Only need to optimize 

hyperparameters of !K(x, x)



Using Gaussian Process as an Emulator

54König, et al., PLB 2020.135814 



Using Gaussian Process as an Emulator

55

• Multi-Tasks Gaussian Process: Leverages multiple correlated outputs from 
shared inputs by defining a combined kernel. This approach increases data points 
without additional costly computations.

• Multi-Fidelity Gaussian Process: Uses limited high-fidelity data and abundant 
low-fidelity data and model differences with a Gaussian Process. This enables 
predicting high-fidelity outcomes from low-fidelity inputs, assuming a linear scaling 
between the fidelity levels.



The MM-DGP Algorithm
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•Deep Gaussian Processes [1]: Stack multiple 
GPs in a neural network-like architecture for 
improved hierarchical learning.

•Multi-Fidelity Modelling: Model low-to-high 
fidelity differences by passing outputs from one 
fidelity as inputs to the next.

•MM-DGP Extension: Adapted to handle 
multiple outputs across fidelity levels, creating 
the Multi-output Multi-fidelity Deep Gaussian 
Process (MM-DGP).

[1] Kurt Cutajar, Mark Pullin, Andreas Damianou, Neil Lawrence, Javier González arXiv:1903.07320  (2021).


https://arxiv.org/search/stat?searchtype=author&query=Cutajar%2C+K
https://arxiv.org/search/stat?searchtype=author&query=Pullin%2C+M
https://arxiv.org/search/stat?searchtype=author&query=Damianou%2C+A
https://arxiv.org/search/stat?searchtype=author&query=Lawrence%2C+N
https://arxiv.org/search/stat?searchtype=author&query=Gonz%C3%A1lez%2C+J
https://arxiv.org/abs/1903.07320


The MM-DGP Algorithm: Energies
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76Ge

Using -full chiral EFT interactions at N2LO:Δ
250 training points
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Using -full chiral EFT interactions at N2LO:Δ
100 training points

30

76Ge



The MM-DGP Algorithm: Energies
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76Ge

Using -full chiral EFT interactions at N2LO:Δ
90 training points
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76Ge

Using -full chiral EFT interactions at N2LO:Δ
50 training points



The MM-DGP Algorithm: Energies
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Using -full chiral EFT interactions at N2LO:Δ

Root Mean Square 
Error = 11 MeV

76Ge

50 training points



The MM-DGP Algorithm:  NMEs0νββ
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76Ge

Using -full chiral EFT interactions at N2LO:Δ
250 training points



The MM-DGP Algorithm:  NMEs0νββ
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76Ge

Using -full chiral EFT interactions at N2LO:Δ
100 training points



The MM-DGP Algorithm:  NMEs0νββ
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76Ge

Using -full chiral EFT interactions at N2LO:Δ
90 training points



The MM-DGP Algorithm:  NMEs0νββ
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76Ge

Using -full chiral EFT interactions at N2LO:Δ
50 training points



The MM-DGP Algorithm:  NMEs0νββ
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Using -full chiral EFT interactions at N2LO:Δ

Root Mean Square 
Error = 0.13

50 training points



The MM-DGP Algorithm: GSA
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Belley, et al., arXiv:2408.02169 (2024)

https://arxiv.org/abs/2408.02169


The MM-DGP Algorithm: GSA
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Belley, et al., arXiv:2408.02169 (2024)

The total matrix element mostly depends on one LEC!

https://arxiv.org/abs/2408.02169


The MM-DGP Algorithm: GSA
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Belley, et al., arXiv:2408.02169 (2024)

The short-range matrix element however sees other contributions from LECs 
associated to the short-range nuclear interaction.

https://arxiv.org/abs/2408.02169


The MM-DGP Algorithm: GSA
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Results for energies are consistent with results of 
physics-based emulators of the coupled cluster method.

Belley, et al., arXiv:2408.02169 (2024)

https://arxiv.org/abs/2408.02169


The MM-DGP Algorithm: GSA

71

Belley, et al., arXiv:2408.02169 (2024)

Ekström, et al., arXiv:2305.06955 (2023)

76Ge

MM-DGP

Eigenvector

continuation

https://arxiv.org/abs/2408.02169
https://arxiv.org/abs/2305.06955


Correlation with Phase Shift
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Belley, et al., arXiv:2408.02169 (2024)

Strong correlation for energies > 50 MeV

The size of matrix elements is mostly 
constrained by the interaction between 
the two nucleons that undergo the 
decay, given they are close enough from 
each other. 

⇒

https://arxiv.org/abs/2408.02169


Posterior Distribution of the NMEs
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•Use 8188 “non-implausible” samples obtain by Jiang, W. G. et al. (Phys. Rev. C 109, 
064314) .

•Many-body problem is “solved” with the MM-DGP.
•Consider all sources of uncertainties by taking:

where the ’s are the errors coming from different sources and are assumed to be 
normally distributed and independent.

•Interactions are weighted by the  neutron-proton phase shifts at 50 MeV and 
observables for mass A=2-4,16.

y = yMM−DGP + ϵemulator + ϵEFT + ϵmany−body + ϵoperator
ϵ

1S0



Choosing a Likelood
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Likelihood 1: Only contains 
 neutron-proton phase 

shifts at 50 MeV.
1S0

Likelihood 2: Contains  
neutron-proton phase 
shifts at 50 MeV  and 
observables for A=2-4.

1S0

Likelihood 3: Contains  
neutron-proton phase 
shifts at 50 MeV and 
observables for A=2-4,16.

1S0

A2-4: E(2H), rp(2H), Q(2H), E(3H), E(4He), rp(4He)            A16: E(16O), rp(16O)



Emulator error
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This error is given directly by the Gaussian 
Process and depends on the LECs (i.e. each 
predicted point has its own error).

y = yMM−DGP + ϵemulator + ϵEFT + ϵmany−body + ϵoperator



EFT Truncation error
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Error due to the truncation of the nuclear 
interactions (the samples are truncated at 
N2LO, including delta excitations).

Use EMN interaction at NLO, N2LO, N3LO 
and N4LO, without delta excitations, to verify 
convergence of chiral expansion.

Using the -full interaction of this work, only 
NLO and N2LO orders are available. Using 
expansion from BUQEYE collaboration, we 
get  = 0.3.

y = yMM−DGP + ϵemulator + ϵEFT + ϵmany−body + ϵoperator

Δ

ϵEFT



EFT Truncation error
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Error due to the truncation of the many-body 
method. This is studied by comparing the 
results of the IM-GCM and VS-IMSRG using 
the magic interaction. 

This error is surprisingly large as we find 
 = 0.88. 

y = yMM−DGP + ϵemulator + ϵEFT + ϵmany−body + ϵoperator

ϵmany−body



Operator error
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Error due to the truncation of the operator in 
chiral expansion + closure energy correction 
+ value of the contact LEC.

Adding N2LO operators has very small 
contribution (< 0.2). Biggest contribution 
comes from determination of contact term. 

Total error amounts to  = 0.47.

y = yMM−DGP + ϵemulator + ϵEFT + ϵmany−body + ϵoperator

ϵoperator
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Belley, et al., Phys. Rev. Lett. 132, 182502
 

M0νββ = 2.60+1.28
−1.36
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Values from:

• Agostini et al., Rev. Mod. 

Phys. 95, 025002 (2023); 

• Yao, Sci. Bull. 10.1016 

(2020); 

• Belley et al., Phys. Rev. 

Lett. 126, 042502 (2020);

• Brase et al., Phys. Rev. 

C 106, 034309  (2021);

• Weiss et al., Phys. Rev. C 

106, 064401 (2022);

• Belley et al., 

arXiv:2307.15156 (2023);

• Belley et al., Phys. Rev. 

Lett. 132, 182502 (2024).

https://arxiv.org/abs/2307.15156


Combining Limits of Different Isotopes

81
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Current
Experimental limits: GERDA (76Ge) Phys. Rev. Lett. 125, 252502, CUPID-Mo (100100) Eur. Phys. J. C 82  11, 
1033, CUORE(130Te) arXiv:2404.04453, EXO(136Xe) Phys. Rev. Lett. 123, 161802  and Kamland Zen (136Xe) 
arXiv:2406.11438

https://arxiv.org/abs/2404.04453
https://arxiv.org/abs/2406.11438
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Current Future
Expected limits: LEGEND (76Ge) arXiv:2107.11462, CUPID (100100) arXiv:1907.09376, AMoRE 
(100100) arXiv:2406.09698, SNO+(130Te) arXiv:2104.11687, NEXT (136Xe) JHEP09(2023)190 and 
nEXO (136Xe) J. Phys .G 49 1, 015104.

Experimental limits: GERDA (76Ge) Phys. Rev. Lett. 125, 252502, CUPID-Mo (100100) Eur. Phys. J. C 82  11, 
1033, CUORE(130Te) arXiv:2404.04453, EXO(136Xe) Phys. Rev. Lett. 123, 161802  and Kamland Zen (136Xe) 
arXiv:2406.11438

https://arxiv.org/abs/2107.11462
https://arxiv.org/abs/2406.09698
https://arxiv.org/abs/2404.04453
https://arxiv.org/abs/2406.11438
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Simplest extension is to add heavy sterile neutrinos ⇒ [T0ν
1/2]−1 = g4

AG0ν M0ν (
⟨mββ⟩

me ) + M0N (
mp

mN )
2

Mass of heavy neutrino
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M0N = M0N
GT − (gV
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F + M0N
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All operators are 
short-range contact 
operators. Can probe energy scales many 

orders of magnitude higher than 
particle accelerators!
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Alex Todd

M0N = M0N
GT − (gV

gA
)2M0N

F + M0N
T

Taiki Shickele

All operators are 
short-range contact 
operators. Can probe energy scales many 

orders of magnitude higher than 
particle accelerators!

From V. Cirigliano, et al., JHEP12(2018)097, only 15 different nuclear matrix elements can contribute to 
mechanisms involved in . Observation in many isotopes is required to identify (or at least constrain) the 
mechanisms at play.

0νββ



Global emulation
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Need For Global Emulator 

93

• Current emulators are still pretty limited and costly to train.

• They do not/cannot make use of the fact that results from different 
interactions correlate strongly in different nuclei  need to retrain the 
emulator for each nucleus.

• Need a global emulator that can leverage this advantage.

⇒



BANNANE

94

Jose Miguel Muñoz Arias

Z

N

emax

Cpp
1S0

cE

...
...LECs

Categorical
embeddings

B
ay
es
ia
n
sh
ar
ed
-l
at
en
t
la
ye
r

...
...

M
ul
ti
-h
ea
d
at
te
nt
io
n
m
ec
ha
ni
sm

F
id
el
it
y
1

µ1
1

ω1
1

µ1
N

ω1
N

...

F
id
el
it
y
2

ε21

ω2
1

ε2N

ω2
N

...

...

µ2
1

µ2
N

...

F
id
el
it
y
L

εL1

ωL
1

εLN

ωL
N

...
...

Multi-Fidelity BNN

µL
1

µL
N

. . . ...

ωL
1

ωL
N

...

BAyesian Neural Network: an Atomic and Nuclear Emulator



Emulating Multiple Isotopes
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BANNANE achieves state-of-the-art emulation, with smaller errors than both 
MM-DGP and EC while emulating over a full isotopic chain.
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Combining this with previous UQ technique, we can predict observables with 
associated uncertainties  over the full isotopic chains in a few minutes.
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Removing 23O from the training data and prediction observables still show 
amazing agreement!



Predicting Unseen Data
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Jose Miguel Muñoz Arias

Removing 15O from the training data, the model struggle to find the nuclear 
shell…



Predicting From Low Fidelity 
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Jose Miguel Muñoz Arias

Including the lowest  fidelity greatly improve the predictions of the model!



Emulating Multiple Isotopes
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Jose Miguel Muñoz Arias

Global sensitivity analysis is consistent with other emulators!
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102

Jose Miguel Muñoz Arias

• Projection of the embeddings from 
the attention mechanism.
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Jose Miguel Muñoz Arias

• Projection of the embeddings from 
the attention mechanism.


• Can clearly see that the model is 
learning nuclear shells!

sd-shell
p-shell



104

• Emulators are required to obtain uncertainty quantification of nuclear theory 
observables required for searches of new physics.


• Emulator further allows the use of other statistical tools like global sensitivity 
analysis.


• Many-body uncertainty is the main source of uncertainty in current calculations.

Summary …

… and Outlook
• Improving the emulator with other machine learning models.

• Reducing  the many-body error using methods that probe the IMSRG(3).

• Doing a similar analysis for other nuclear processes.

• Computing other observables for BSM searches with uncertainties.

Thank you!



Questions?
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abelley@mit.edu

mailto:abelley@mit.edu

