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Abstract

We reproduce past solutions of the Tolman-Oppenheimer-Volkoff equations to estimate
the maximum mass of a neutron star for two models of the equation of state (EoS), and
discuss the future prospects of estimating a maximal-density constraint on the EoS. We use
an EoS for a non-interacting ideal Fermi gas of pure neutrons, finding a maximum mass
Mmax ≈ 0.71M⊙ and a corresponding radius R ≈ 9.0 km, agreeing with past studies. This
procedure is repeated for an EoS modified to include the strong nuclear interaction. From
this we find Mmax ≈ 2.22M⊙ and R ≈ 10.0 km, in agreement with past studies as well. The
next steps of this project will be to assume the lower bound Mmax ≈ 2.0M⊙ and find an EoS
that satisfies this mass condition and minimizes sound speed cs.
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1 Introduction and background information

In this section, we provide some relevant background information on neutron stars and a brief
motivation for the project.

1.1 Neutron stars from astronomical perspective

A neutron star is the remnant core of a star that stopped undergoing nuclear fusion, so radiation
pressure no longer holds it up against gravitational collapse. Instead, it is in a stable hydrostatic
equilibrium between the inward gravitational force and outward neutron degeneracy pressure and
neutron-neutron repulsion via the strong nuclear interaction (Silbar & Reddy, 2004). Its radius is
on the scale of ∼10 km and its mass is on the order of ∼1-2 M⊙. This reflects the extremely high
density of a neutron star, ∼ 1015 g

cm3 , an order of magnitude above nuclear saturation density, the
density of an atomic nucleus. These values were determined from observations of pulsars, rapidly
spinning neutron stars that emit beams of light along a specific direction in the rotating frame of
each star. By measuring the timing of the light pulses intersecting Earth, astronomers were able
to estimate the objects’ small size (Carroll & Ostlie, 2017).

1.2 Neutron star formation mechanisms

Neutron stars form when the remnant core of a main sequence star undergoes gravitational collapse
as its mass exceeds the Chandrasekhar limit of ∼ 1.4M⊙. This is the limit beyond which electron
degeneracy pressure can no longer support the star against gravitational collapse, so the next
stable configuration is the one that characterizes neutron stars, where the star is held up by
neutron degeneracy pressure (Carroll & Ostlie, 2017).

During gravitational collapse, protons and electrons combine to form neutrons and electron
neutrinos, and the reverse reaction occurs because of beta decay. As the reverse reaction occurs,
the proton and electron products are also repelled from each other due to degeneracy pressure,
increasing the energy of the system slightly. The reactions proceed until reaching an equilibrium
where the energy of the system is minimized and it would cost energy for either reaction to continue.
Also, matter should be electrically neutral, which requires the charges of protons and electrons to
cancel. The resulting matter is composed of mostly neutrons, with trace amounts of electrons and
protons remaining (Silbar & Reddy, 2004).

In its stable state, the star is held up by the pressure created by neutron star matter. As we
will show in the next section, neutron degeneracy pressure, which is a purely quantum mechanical
effect that causes neutrons to repel, is not enough to support the heavy neutron stars. The bulk
of the pressure originates from the nuclear interaction between neutrons.

Neutron degeneracy pressure arises from the Pauli exclusion principle for fermion wavefunc-
tions. Neutrons, protons, and electrons are fermions, which means that they must have antisym-
metric wavefunctions. Upon exchange of any two identical fermions, the wavefunction describing
their superposition must be equal in magnitude and opposite in sign to the pre-exchange superpo-
sition wavefunction (Schroeder, 2000a).

1.3 Neutron star maximum mass

As matter accretes onto a neutron star, it will continue to exist in its stable configuration as
long as hydrostatic equilibrium is maintained between gravity and neutron degeneracy pressure
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Figure 1: Masses of observed neutron stars and black holes. The mass gap lies between the EM
Neutron Stars in yellow and the EM Black Holes in red. Figure adapted from (LIGO-Virgo-
KAGRA, 2021).

and nuclear repulsion. Eventually when enough mass is accreted, the gravitational force exceeds
degeneracy pressure and nuclear repulsion, and gravitational contraction occurs. This is a runaway
mechanism because at this density, there is no longer any known force stronger than gravity, so it
proceeds until the star collapses to become a black hole (Carroll & Ostlie, 2017).

Neutron stars have been observed at ∼1.4 - 2.0 M⊙, and black holes have been observed at
∼ 5M⊙ and above. There is an observational ”mass gap” between 2 and 5 M⊙, in which there is
an underabundance of neutron star and black hole observations, as shown in Fig. 1 (LIGO-Virgo-
KAGRA, 2021).

This observational uncertainty of the maximum mass of a neutron star cannot be fully removed
by theory, because the structure equation reflecting hydrostatic equilibrium depends directly on the
strength of nuclear repulsion, which has large uncertainty. As such, the maximummass of a neutron
star is poorly constrained, and that is the primary motivation for studying the thermodynamic
configurations of neutron stars.

1.4 Project overview

As alluded to in the previous section, the mass and radius of a neutron star can be predicted by
solving a structure equation that encodes the hydrostatic equilibrium between inward gravitational
force and the outward pressure of neutron star matter. The structure of a neutron star is governed
by the neutron star’s equation of state (EoS). There has been a plethora of EoSs from past research,
but there is still significant uncertainty in the true EoS.

In this project (INTURN 24-1), we seek to find a constraint on the EoS corresponding to
the most compact configuration of a neutron star. To do this, we have reproduced past studies
of neutron star EoSs, focusing on the ideal Fermi gas model, which encodes neutron degeneracy
pressure, and the strong nuclear interaction effect. The crucial next step in this study will be to
make the assumption that the maximum neutron star mass is 2 M⊙, a lower constraint according
to astronomical observations. We will attempt to find the densest equation of state that predicts
this assumed maximum mass.

3



2 Scientific results: reproducing the mass-radius relation-

ship for various equations of state

In this section, we discuss the scientific results we have obtained during the program. We have
reproduced the mass-radius relationship for various equations of state.

2.1 Neutron star structure equation

The mass and radius of a neutron star are found by solving the structure equations mentioned in
the previous section. Tolman, Oppenheimer, and Volkoff derived these equations in Tolman (1939)
and Oppenheimer & Volkoff (1939), so they are known as the Tolman-Oppenheimer-Volkoff (TOV)
equations. They are two coupled first order differential equations derived from the condition for
hydrostatic equilibrium between gravitational force and outward pressure:

dp

dr
= −Gϵ(r)M(r)

r2

[
1 +

p(r)

ϵ(r)

] [
1 +

4πr3p(r)

M(r)

] [
1− 2GM(r)

r

]−1

, (1)

dM
dr

= 4πr2ϵ(r) . (2)

In this project, we use the natural unit system, in which ℏ = c = 1. This makes the gravitational
constant G = 6.72× 10−45MeV−2. The variables consist of r, the distance from the center of the
star, p, pressure (distance dependent), ϵ, energy density (distance dependent), and M, mass
enclosed within the distance r from the center of the star. r and M are cumulative quantities and
take on the values of neutron star radius R and mass M , respectively, at the surface.

The main expression outside of the brackets in Eq. (1) is derived from a free body diagram using
Newtonian gravity, and the three correction factors in brackets are derived from general relativity
(Silbar & Reddy, 2004). Eq. (2) is derived from mass density ρ integrated over the distance from
the center of the neutron star, and we utilize the relativistic relation ρ = ϵ in natural units.

Intuitively, the initial conditions should be central pressure p(0) and central cumulative mass
M(0). However, there is an issue with using the values at r = 0 because this is the location of a
singularity for the TOV equation. Therefore, practically, we need the initial conditions to instead
be at some small but positive r = rsmall.

One has to specify by hand the value of central number density n(rsmall) or p(rsmall), which can
be converted through the EoS, covered in section 2.2. Central cumulative mass M(rsmall) is found
by multiplying central mass density ρ(rsmall) by the volume of a small sphere with radius rsmall.

To solve the TOV equation, we have coded a Python notebook.
The solution we want is M(r). Once p(r) = 0, it indicates that the surface r = R has been

reached, and M(r) flattens out around this distance. Fig. 2 shows example plots of M(r) and
p(r) for the central mass density n(r = 0.1 km) = 7n0, where n0 ≈ 0.16 fm−3 is nuclear saturation
number density (Silbar & Reddy, 2004).

To find the total mass and the total radius of the neutron star, we simply terminate the solving
algorithm at p(r) = 0 and pick out the values of M(R) = M and R here. We then convert these
values to units of M⊙ and km, respectively.
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Figure 2: Plots of cumulative mass and pressure vs distance from the star’s center. Note how both
quantities flatten out near the star’s surface (R = r ≈ 9.96 km). The mass of this neutron star is
∼ 2.22M⊙.

2.2 Equation of state of ideal Fermi gas

To solve the TOV equation, an equation of state is needed to convert between number density n,
energy density ϵ, and pressure p. It is a relation between pressure and energy density that serves as
a constraint on the thermodynamic properties of the matter in question. It is used in conjunction
with the initial conditions p(rsmall) and M(rsmall) to be an input for the TOV equation. Because
the output of the TOV equation is a mass-radius relationship for any fixed EoS, there is a one-to-
one correspondence between each EoS and each mass-radius relation. The EoS takes into account
the components of pressure keeping the neutron star stable, including the nuclear interaction that
is poorly constrained, so we have some freedom in choosing an EoS, and it is where the uncertainty
in the maximum mass lies.

To reproduce previous studies of neutron stars held up only by neutron degeneracy pressure,
not considering the nucleon interactions taking place, we find the EoS for the non-interacting ideal
Fermi gas. This utilizes quantum statistics of a zero-temperature system of pure neutrons packed
tightly enough that the Pauli exclusion principle determines the system’s density. Rather than
deriving an analytic function for pressure in terms of energy density, we derive formulae for energy
density and pressure independently, and determine a range of discrete corresponding values for
each.

Because it is convenient to specify a range of number densities n to compute values for, we try
to find expressions with n as the independent variable.

For the Fermi momentum, which determines the energy density of the Fermi gas, we quote its
expression from statistical mechanics (Schroeder, 2000a) (Silbar & Reddy, 2004):

5



kF = 3

√
6π2n

g
, (3)

where the number of spin states per energy state g = 2 for neutrons.
Also from statistical mechanics, we find the energy density by integrating the energy (Schroeder,

2000a) (Silbar & Reddy, 2004):

ϵ =
g

2π2

∫ kF

0

k2
√

k2 +m2
n dk , (4)

where k is momentum per particle and mn ≈ 939.565MeV is the mass per neutron. The square
root term is the energy per particle, an expression from relativistic dynamics in natural units. The
one other quantity we need before evaluating pressure is chemical potential (Schroeder, 2000b)
(Silbar & Reddy, 2004):

µ ≡ ∂ϵ

∂n
=

√
k2
F +m2

n . (5)

Finally, a relation between pressure, energy density, chemical potential, and number density is
derived from the thermodynamic identity (Schroeder, 2000b) (Silbar & Reddy, 2004).

p = −ϵ+ µn . (6)

Using these relations, we specify a range of reasonable number densities and compute a value
of pressure and energy density for each n.

Upon iterating over many central number densities and solving the TOV equation for a mass
and radius for each n(rsmall), we plot the masses and radii to display the mass-radius relation. We
used values of n(rsmall) between 0.1n0 and 100n0, obtaining the plot in Fig. 3 for the non-interacting
Fermi gas model.

For this situation, the maximum mass is ∼ 0.71M⊙ with a corresponding radius of ∼9.0 km.
This is what we expect from the original work of Oppenheimer & Volkoff (1939).

We are missing the important nuclear interaction in the EoS, which supposedly will increase
the maximum mass to ∼ 2M⊙, so in the next section we account for this effect and study the
result.

2.3 Including the nuclear interaction effect

The strong nuclear interaction causes neutrons to repel each other when they are extremely nearby,
as in a neutron star (Silbar & Reddy, 2004). This extra force of repulsion is an important correction
to the ideal Fermi gas model. We include it by modifying the formula for energy density. Instead
of finding energy density from Fermi-Dirac statistics as in the Fermi gas case, we pull Eq. (11) for
energy per neutron (excluding its rest mass) from Gandolfi et al. (2014):

E = a

(
n

n0

)α

+ b

(
n

n0

)β

. (7)

Here, a, b, α, and β are parameters that we quote without going into the nuclear physics.
Eq. (7) encodes both the ideal Fermi gas model and the strong nuclear effect. Then, the energy
density can be found from Eq. (8):
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Figure 3: Mass-radius plot for non-interacting pure neutron Fermi gas

ϵ = n (E +mn) . (8)

Plugging this in to the existing TOV solver code for a number density range of 0.5n0 to 10n0

yields a maximum mass of ∼ 2.22M⊙ and a corresponding radius of ∼10.0 km, as seen in the
mass-radius plot in Fig. 4.

This result roughly agrees with the analogous result from Silbar & Reddy (2004), in which the
maximum mass was ∼ 2.3M⊙ and the corresponding radius was ∼13.5 km.

3 Future prospects: Toward finding the most compact

configuration

Having reproduced the results of past neutron star EoS studies to verify the validity of our TOV-
solving program, we now seek to examine the lower bound of the EoS. We do this by making use
of an equation relating the EoS to the sound speed cs within the neutron star matter:

dp

dϵ
= c2s . (9)

This relation is expressed in natural units, where cs can take on any values between 0 (indicating
an EoS at the limit imposed by stability) and 1 (indicating an EoS at the limit imposed by causality,
cs = c). cs = 1 imposes an upper bound on the EoS, while cs = 0 imposes a lower bound, the end
that we are interested in further constraining. The new condition that we will impose in this study
is a maximum mass Mmax of 2 M⊙. This is the lower bound of Mmax, corresponding to a stricter
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Figure 4: Mass-radius plot found from modifying the energy density to include the strong nuclear
interaction

lower bound on the EoS. Drischler et al. (2021) does an excellent job of exploring the consequences
of Eq. (9), and we will be drawing from their work in this next step of the project.

To estimate the EoS corresponding to a minimum cs and Mmax ≈ 2.0M⊙, we plan to vary
the nuclear EoS above n ∼ (1-2)n0 until the slope of the EoS approaches 0, while simultaneously
requiring that the maximum mass reaches 2 M⊙. Below this density, the nuclear EoS can be
fixed, e.g., by using Eq. (7). We may split the EoS above n ∼ (1-2)n0 into a piece-wise function
for different density ranges. At this point we will present an estimate of the lower bound of the
neutron star EoS.

Acknowledgement

This research was supported by the INT’s U.S. Department of Energy grant No. DE-FG02-
00ER41132 and the N3AS’s National Science Foundation award No. 2020275.

References

Carroll, B. W., & Ostlie, D. A. 2017, An Introduction to Modern Astrophysics, 2nd edn., ed.
S. F. P. Addison-Wesley (Cambridge University Press)

Drischler, C., Han, S., Lattimer, J. M., et al. 2021, Phys. Rev. C, 103, 045808, doi: 10.1103/
PhysRevC.103.045808

8

http://doi.org/10.1103/PhysRevC.103.045808
http://doi.org/10.1103/PhysRevC.103.045808


Gandolfi, S., Carlson, J., Reddy, S., Steiner, A. W., & Wiringa, R. B. 2014, Eur. Phys. J. A, 50,
10, doi: 10.1140/epja/i2014-14010-5

LIGO-Virgo-KAGRA, Aaron Geller, N. U. 2021, Masses in the Stellar Graveyard: GWTC-3,
https://www.ligo.caltech.edu/MIT/image/ligo20211107a

Oppenheimer, J. R., & Volkoff, G. M. 1939, Phys. Rev., 55, 374, doi: 10.1103/PhysRev.55.374

Schroeder, D. 2000a, An Introduction to Thermal Physics (Addison Wesley Longman)

—. 2000b, An Introduction to Thermal Physics (Addison Wesley Longman)

Silbar, R. R., & Reddy, S. 2004, Am. J. Phys., 72, 892, doi: 10.1119/1.1852544

Tolman, R. C. 1939, Phys. Rev., 55, 364, doi: 10.1103/PhysRev.55.364

9

http://doi.org/10.1140/epja/i2014-14010-5
https://www.ligo.caltech.edu/MIT/image/ligo20211107a
http://doi.org/10.1103/PhysRev.55.374
http://doi.org/10.1119/1.1852544
http://doi.org/10.1103/PhysRev.55.364

	Introduction and background information
	Neutron stars from astronomical perspective
	Neutron star formation mechanisms
	Neutron star maximum mass
	Project overview

	Scientific results: reproducing the mass-radius relationship for various equations of state
	Neutron star structure equation
	Equation of state of ideal Fermi gas
	Including the nuclear interaction effect

	Future prospects: Toward finding the most compact configuration

