
Year: 2025, Project: INTURN 25-4

Equilibration Processes of Quantum Many-Neutrino
Systems in Core-Collapse Supernovae

Student: Nikoli Ralph1

Mentors: Vincenzo Cirigliano1 and Yukari Yamauchi1
1Institute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA

September 6, 2025

Abstract

Accurately modeling dense neutrino systems is critical to the understanding of high den-
sity astrophysical environments, such as core-collapse supernovae and neutron star mergers.
In this project, we investigate how the number of neutrino flavors, Nα, affects the equili-
bration and thermalization of quantum many-body neutrino systems. For our investigation,
we utilize the full neutrino-neutrino Hamiltonian, as derived in Ref. [1], thereby including
the usually neglected non-forward scattering terms. We then analyze several many-body
neutrino systems with differing numbers of flavors, focusing on Nα ∈ {1, 2}, and we examine
the thermalization process for both flavor and momentum degrees of freedom. Our results
suggest that a higher number of flavors will increase entanglement entropy and shorten the
timescales required to achieve thermalization.
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1 Introduction and Formalities
Neutrinos are charge-neutral, spin-1/2 particles, and are only known to interact via two forces, the
weak force and the gravitational force [2]. Of the known, massive elementary particles, neutrinos
are among the lightest and most abundant in the universe. They have extremely small masses and
interact very weakly, yet they play a critical role in many dense astrophysical processes, such as
core-collapse supernovae and neutron star mergers, where they are produced in vast quantities. For
example, we can consider one of the closest supernovae in modern history, SN1987A, as discussed
in Ref. [2], which occurred very near our own Milky Way galaxy, in the Large Magellanic Cloud,
and which was carefully observed here on Earth on February 23, 1987. Roughly three hours before
the resulting light from the explosion reached us here on Earth, a significant burst of neutrinos
was detected in neutrino detectors around the world. It is expected that during a core-collapse
supernovae, such as SN1987A, approximately 99% of the gravitational energy is converted into
an extraordinary number of neutrinos; From the number of neutrinos detected during the event,
it is estimated that the number of neutrinos released was on the order of 1058, as was somewhat
anticipated from previous attempts in modeling supernovae [2].

The creation and emission of such vast quantities of neutrinos is believed to be a key factor in
the generation the outward shockwave that we then eventually see as a supernovae. Furthermore,
these dense neutrino systems seem to be heavily involved in the creation of the heavier elements
during such violent celestial events, in a process known as nucleosynthesis [2, 3]. Differences in how
neutrino interactions are modeled can have a drastic effect on the simulations resulting abundance
of various elements, as seen in Ref. [3]. As such, there is a significant interest in understanding
how these resulting dense neutrino systems affect the overall astrophysical processes from which
they have spawned. However, this is a monumental task, given the scale and complexity of such
systems, so requires the use of some clever approximations.

As discussed in Refs. [1, 2], it is quite common to study astrophysical neutrinos through the
use of Quantum Kinetic Equations (QKEs). The QKEs are time-evolution equations for the one-
body reduced neutrino density matrix, which have been derived from quantum field theory using
various methods. However, there is still the lingering question about the validity of this kind
of one-body analysis, and if it leaves out any important many-body correlations or entanglement
effects, especially in the context of quantum many-body approaches to the problem of the neutrino
gas, as mentioned in Ref. [1].

It is our understanding that, until the very recent work done in Ref. [1], which derives the
full neutrino-neutrino interaction Hamiltonian Hνν from the Standard Model, studies on quantum
many-body neutrino systems have used a truncated neutrino-neutrino interaction Hamiltonian
H

(T )
νν , which neglects non-forward kinematics. As we can see in Ref. [1], results obtained using

Hνν do not necessarily line up with those obtained using H(T )
νν . As such, it is imperative that we

thoroughly investigate how these quantum many-body neutrino systems behave when using Hνν .
For these reasons, this paper aims to investigate the equilibration and thermalization properties
of these dense quantum many-body neutrino systems.

Please note that, for the sake of convenience, we use natural units throughout this paper (i.e.
ℏ = c = 1). Additionally, for similar reasons, we represent our individual neutrinos as plane-waves.

1.1 Neutrino Oscillations
An important consideration when modeling neutrino dynamics is that of neutrino oscillations
(vacuum oscillations). Neutrino oscillations occur because the neutrinos of definite flavor, να, are
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linear combinations of neutrino mass eigenstates, νm, of the vacuum term of the Hamiltonian,
Hvacuum [4]. Effectively, this means that a neutrino that begins as some definite flavor, α, will
gradually oscillate into being a superposition of several different neutrino flavors. After some
amount of time, t, a neutrino which began as some initial flavor, α, would have the possibility to
then be measured as a different flavor, say α′.

To demonstrate this effect, we can consider a single neutrino born with a definite flavor α. For
the sake of simplicity, we can treat this neutrino as being a plane wave [4]. Following along with
Kayser’s discussion on neutrino oscillations in Ref. [4], the wavefunction of this neutrino at it’s
birth can be written as

ψ(x, t = 0) =
∑
m

Uαmνme
ipνx, (1)

where U is an orthonormal mixing matrix and pν is the fixed momentum of the neutrino. The
time evolved wavefunction can then be written as

ψ(x, t) =
∑
m

Uαmνme
ipνxe−iEm(pν)t, (2)

where Em(pν) represents the energy associated with the mass eigenstate m and the momentum of
the neutrino pν . Because neutrinos travel at hyper-relativistic speeds, we can assume that at time
t, we will have that x ≈ t. Additionally, because all of the masses Mm are much smaller than pν ,
we can use the approximation

Em(pν) ≈ pν +
M2

m

2pν
. (3)

As further discussed by Kayser in Ref. [4], we can use these approximations to then rewrite the
time evolved wavefunction as

ψ(t, t) ≈
∑
m

Uαmνme
−i

M2
m

2pν
t. (4)

This expression allows us to easily show that the probability P of finding the neutrino as being
flavor α′ at some distance x away from it’s source is

P = | ⟨vα′ | ψ(x, t)⟩ |2 =
∑
m

U2
α′mU

2
αm +

∑
m′ ̸=m

Uα′mUαmUα′m′Uαm′ cos

(
|M2

m −M2
m′ |

2pν
x

)
, (5)

which demonstrates to us that a neutrino which is born of some flavor α can oscillate into another
flavor α′, as desired.

In the results which we will be considering later, in Sect 2, we are currently neglecting vacuum
oscillations, which allows us to conserve for total lepton flavor. In the very dense neutrino systems
we are considering, the neutrino-neutrino interaction term, Hνν , is expected to dominate. However,
we are planning to run future simulations that also consider vacuum oscillations, thereby allowing
for the violation of lepton number conservation, to then compare with our current results.

1.2 The Hilbert Space
In an effort to formalize our quantum many-body neutrino systems, we begin by considering a
system of neutrinos confined to a finite volume, V , which allows us to discretize the various one-
body energy eigenstates, as well as allowing us to treat our various neutrinos as plane waves in
said volume. We assume that there is some maximum one-body momentum mode number, k, that
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the system will not exceed, due to the conservations of the energy and momentum of our N -body
system. We can identify a particle by its three momentum pi, where i ∈ {1, 2, · · · , k}, and by a
flavor label αj, where j ∈ {1, 2, · · · , Nα} [1]. Throughout this paper, we are mainly considering
systems of Nα = 2 flavors, for which we will instead denote the flavor label as some α ∈ {e, µ}, for
simplicity. Considering a system of N neutrinos, we can see that there is an upper limit on the
dimension, dh, of the Hilbert space of said system,

max (dh) =

(
Nα × k
N

)
. (6)

However, this upper limit can be reduced by considering the consequences of conservation laws
on the evolution of some initial state, such as the conservations of kinetic energy and momentum.
The conservation of kinetic energy will be further discussed later on in Sect. 1.6. Additionally,
in this paper, since we are currently neglecting the Hvacuum term, we can also enforce lepton
flavor conservation, thereby further reducing the effective dimension of the Hilbert space of a
given N -body neutrino system. Our current results, which are discussed in Sect 2, are all for
an 8-body neutrino system with Nα = 2 and k = 35, yet our largest effective Hilbert space has
a dimension dh = 1260, which allows us to simulate the full-body evolution of such systems by
exactly diagonalizing the Hamiltonian.

1.3 Second Quantization
In order to further develop our model for quantum many-body neutrino systems, we utilize second
quantization, as described in Refs. [1, 5]. Recognizing that neutrinos are fermions, we can see that
for a system of N neutrinos, the wavefunction of our many-body basis state can be written using
the Slater Determinant (denoted as “S.D.”), as is done in Ref. [1], giving us

|n⟩ = S.D.

 ∏
αjpi: nαjpi=1

|pi, αj⟩

 . (7)

We can then represent our many-body basis states in the occupation number representation,
taking the ordered set n = {nα1p1 , nα2p1 , · · · , nαNαp1 , nα1p2 , · · · , nαNαpk} as being the occupation
numbers for our single particle basis states, which allows us to write the many-body basis states
in the form

|n⟩ .= |nα1p1 , nα2p1 , · · · , nαNαp1 , nα1p2 , · · · , nαNαpk⟩ , (8)
where nαjpi ∈ {0, 1}.

We then introduce the annihilation and creation operators, âαj
(pi) and â†αj

(pi). Note that
the annihilation and creation operators are Hermitian conjugates of each other. These operators
act on functions in the occupation number basis and play a leading role in the method of second
quantization [5]. By design, the annihilation operator âαj

(pi) decreases the value of the occupation
number nαjpi of an occupied state by unity, thereby causing it to become unoccupied. Conversely
the creation operator â†αj

(pi) increases the value of the occupation number nαjpi of an unoccupied
state by unity, thereby causing it to become occupied. It is vital that we account for the anti-
commutation of the creation and annihilation operators correctly, so we introduce an ordering rule
for the basis |n⟩; The order of our occupied one-body basis states reflects their order in the ordered
set n, described above. This allows us to then rewrite the N -body basis states in the form

|n⟩ .=
â†αj1

(pi1)√
V

â†αj2
(pi2)√
V

· · ·
â†αjN

(piN
)

√
V

|0⟩ , (9)
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where αjn and pin are the flavor and momentum of the nth neutrino in a given N -body neutrino
system [1]. The annihilation and creation operators are both proportional to

√
V , so we also

multiply each operator by a factor of 1√
V

to normalize our states. Notice that the complex conjugate
of this general N -body basis state can be represented as

⟨n| .= ⟨0|
âαjN

(piN
)

√
V

· · ·
âαj2

(pi2)√
V

âαj1
(pi1)√
V

. (10)

These N -body basis states form an orthonormal basis and collectively form the largest possible
Hilbert space for a given N -body neutrino system, which we discussed in Sect. 1.2. Using these
basis states, we can represent a generic state in this Hilbert space by

|Ψ⟩ =
dh∑
n

cn |n⟩ , (11)

where cn are complex amplitudes [1].

1.4 The Full Hamiltonian
Using this representation for our quantum many-body neutrino systems, we can now construct
the Hamiltonian, as described in Ref. [1]. When restricting ourselves to two flavors of neutrino,
representing our flavor label as α ∈ {e, µ}, we can write the kinetic term of the Hamiltonian as

Hkin =

∫
dp

(2π)3

[(
|p|+ M2

1 +M2
2 − cos (2θ) δM2

4|p|

)
â†e(p)âe(p)

+

(
|p|+ M2

1 +M2
2 + cos (2θ) δM2

4|p|

)
â†µ(p)âµ(p)

+
sin (2θ) δM2

4|p|
(
â†e(p)âµ(p) + â†µ(p)âe(p)

) ]
,

(12)

where Mm are the masses of the neutrino mass eigenstates and where δM2 = M2
2 −M2

1 . Notice
that the last term is the usual vacuum mixing term.

The full neutrino-neutrino interaction term of the Hamiltonian can be written as

Hνν =
GF√
2

∑
α,α′,β,β′

∫
dq

(2π)3
dq′

(2π)3
dp

(2π)3
dp′

(2π)3
(2π)3δ(p + q − p′ − q′)

×
(
â†α′(p′)âα(p)â†β′(q′)âβ(q)

δα′αδβ′β + δα′βδβ′α

2
g(p′,p,q′,q)

)
,

(13)

with
g(p′,p,q′,q) = f †(p′,q′) f(p,q), (14)

f(p,q) =
√
2

(
e−iϕp sin (

θp

2
) cos (

θq

2
)− e−iϕq cos (

θp

2
) sin (

θq

2
)

)
, (15)

where the factor GF is the Fermi constant, the factor δ(p+ q− p′ − q′) accounts for conservation
of momentum, and the factor g(p′,p,q′,q) uses the relative angles of the momenta involved in a
given neutrino-neutrino interaction to account for the strength of the interaction. Note that we
use the spherical coordinates ϕp, θp, ϕq, and θq to represent the directions of p and q, respectively.
As we can see, the Hamiltonian also uses the annihilation and creation operators, to annihilate the
momenta that we started with and create the momenta that we end with, for a given interaction.
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1.5 Setup for Hot and Dense Media
As is done if Ref. [1], it is now useful to consider and discuss the energy scales which characterize
the dynamics of many-body neutrino systems of astrophysical interest, and then define a rescaled,
dimensionless Hamiltonian. For neutrinos systems of astrophysical interest, the initial state is not
too far from equilibrium, so in an effort to estimate the relative sizes of the various contributions
to the Hamiltonian H, we assume an approximately valid scaling relation between the system’s
temperature T , volume V , and number of neutrinos N by 1/V ∼ T 3/N . Since the temperatures
of the systems we are considering are at least of order MeV, the energy scales will be separated by
many orders of magnitude, meaning

|p| ∼ T ≫ GFT
3 ≫ δM2

T
. (16)

For the situations we are considering, the scales of T and GFT
3 differ by about ten orders of

magnitude, while GFT
3 and δM2/T differ by another two or three order of magnitude, depending

on the magnitude of the mass splitting used [1].
Continuing with the process described in Ref. [1], we consider a unit of energy (and inverse

time) defined by the quantity E ≡ GF/(
√
2V ) and we introduce the dimensionless parameters

T̄ =
T

E
∼ 1010 (17)

ω̄ =
δM2

4TE
∼ 10−3 − 10−2 (18)

|p̃| = |p|
T

∼ O(1), (19)

which then allows us to rewrite the Hamiltonian in the following way:

H = E
(
H̄kin + H̄νν

)

H̄kin =
1

V

k∑
i=1

(
T̄ |p̃i| −

ω̄ cos (2θ)

|p̃i|

)
â†e(pi)âe(pi) +

(
T̄ |p̃i|+

ω̄ cos (2θ)

|p̃i|

)
â†µ(pi)âµ(pi)

+
ω̄ sin (2θ)

|p̃i|
[
â†e(pi)âµ(pi) + â†µ(pi)âe(pi)

]

H̄νν =− 1

V 2

∑
i,j,k,l

g(pi,pj,pk,pl) δ(pi + pj − pk − pl) â
†
α(pi)â

†
β(pj)âα(pk)âβ(pl).

(20)

For the systems we will be discussing in Sect. 2, we will be neglecting the Hkin term of
the Hamiltonian and only consider the effects of the Hνν term. In the hot, dense astrophysical
environments that we are interested in, and over the incredibly short time scales that we are
considering, we expect that the effects from the Hνν term will be far greater than the effects from
the vacuum oscillations part of the Hkin term. In addition, we approximately have that kinetic
energy is conserved, as we will discuss in the next section, Sect. 1.6. However, there are plans to
include the Hkin term in future simulations, as is later discussed in Sect. 3.
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1.6 Conservation of Kinetic Energy
As a result of considering such hot and dense astrophysical scales, with T̄ ∼ 1010, we can further
simplify our many-body neutrino systems by noticing an interesting relationship between T̄ and
the conservation of kinetic energy [1]. In Fig. 1, it can been observed that dense neutrino systems
with high T̄ will have a strong tendency to conserve their kinetic energy. Therefore, we will enforce
kinetic energy conservation, allowing us to further rewrite the neutrino-neutrino interaction term
of the Hamiltonian as

H̄(K)
νν =− 1

V 2

∑
i,j,k,l

â†α(pi)â
†
β(pj)âα(pk)âβ(pl)

× δ(pi + pj − pk − pl) δ(|pi|+ |pj| − |pk| − |pl|) g(pi,pj,pk,pl).

(21)

This is the Hamiltonian that we use in the simulations which are discussed in the next section,
Sect. 2.

Figure 1: The squared modulus of the amplitude of the 20th basis state simulate with Hνν (denoted
as “Full”) and with H

(K)
νν (denoted as “Kec”). The Hamiltonian parameters are ω = 1.0 and

sin (2θ) = 0.8. The model has k = 11 momentum modes, and N = 2 neutrinos. Note that the
black solid line is almost on top of the red solid line. Credit: Vincenzo Cirigliano, Srimoyee Sen,
and Yukari Yamauchi. “Neutrino many-body flavor evolution: the full Hamiltonian”. see Ref. [1].

2 Results and Discussion
2.1 Initial Conditions
Before we dive into the results of our simulations, it is important to first understand the context
of each of the systems we will be looking at. As discussed previously, we are going to be investi-
gating 8-body neutrino systems. For our simulations, we consider systems with momentum modes
on a two-dimensional grid and we introduce a “UV” cut-off pmax that determines the maximum
magnitude of the momenta. In an effort to mimic astrophysical situations in which there is a net
flux of neutrinos, we also only consider momentum modes with a positive x component, as is also
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done in Ref. [1]. We can write this as

p̃i ≡
pi

T
=

2π

LT
zi ,

zi ∈ {(zx, zy); such that zx, zy ∈ Z, 0 < |zi| ≤ zmax, and 0 < zx}.
(22)

For our simulations we take zmax = 5, which gives us k = 35 total momentum modes to choose
from. However, given our choice of initial conditions, conservations laws will cause all of our
systems to only visit 18 of the available momentum modes. We label the momentum modes in an
increasing order of zy and zx. For our simulations we chose the momentum modes

z6 = (3,−3), z9 = (2,−2), z11 = (4,−2), z13 = (2,−1),

z21 = (1, 1), z26 = (2, 2), z27 = (3, 2), and z29 = (1, 3),
(23)

as depicted by the left grid in Fig. 2. Furthermore, for these simulations, we are only varying
the neutrino flavors, from (Ne, Nµ) = (8, 0), to a maximal mixing of of the number of flavors,
(Ne, Nµ) = (4, 4).

Figure 2: The left grid shows the initially occupied momentum modes, marked with black dots, for
all of the 8-body neutrino systems we consider. The right grid shows all of the momentum modes
that are visited by all of the time evolved 8-body neutrino systems we consider. In both graphs,
all k = 35 momentum modes are marked in pink.

2.2 One-Body Observables N+
i N

As is done in Ref. [1], we use the reduced one-body density operator ρ(1)αβ to define the one-
body observables N+

i N via the operator N+
i , which represents the total occupation number for

momentum mode pi (normalized to N), as follows:

ρ
(1)
αβ(pi) =

1

N
⟨Ψ|

â†β(pi)√
V

âα(pi)√
V

|Ψ⟩ , (24)

N+
i = ρ(1)ee (pi) + ρ(1)µµ(pi). (25)
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We then use these one-body observables to study the kinetic properties of our quantum 8-body
neutrino systems, under time evolution. We started with a system of (Ne, Nµ) = (8, 0) neutrinos,
where all initial momenta modes are occupied by e flavored neutrinos. And then for each successive
simulation, we altered our system by changing the initial flavors, such that the flavor of the highest
indexed momentum mode zi that is occupied by an e flavored neutrino is changed to a µ flavored
neutrino, until we had a maximal mixing of flavors, (Ne, Nµ) = (4, 4). We can see the results of
most of this process in Fig. 3.

Figure 3: Time evolved N+
i N observables for four different 8-body neutrino systems. Each system

occupies the same initial momentum modes. They differ from each other by the number of electron
neutrinos Ne and the number of muon neutrinos Nµ in the system. We start with all of the initial
momenta occupied by e flavored neutrinos, and then we progressively change the initial flavors,
such that the flavor of the highest indexed momentum mode zi occupied by an e flavored neutrino
is changed to a µ flavored neutrino. Top left: (Ne, Nµ) = (8, 0), with dh = 14. Top right:
(Ne, Nµ) = (7, 1), with dh = 126. Bottom left: (Ne, Nµ) = (6, 2), with dh = 476. Bottom right:
(Ne, Nµ) = (5, 3), with dh = 994.

As we can see in Fig. 3, in the case where (Ne, Nµ) = (8, 0) there is practically no convergence
to a steady state. When we replace a single electron neutrino with a muon neutrino, in the case
where (Ne, Nµ) = (7, 1), we still don’t really see much convergence; However, notice that in the
central group of curves, there appear to be two smaller sub groups of curves that diverge from each
other. In the case where (Ne, Nµ) = (6, 2), we can clearly see that our system is now converging
to some steady state, which further improves in the (Ne, Nµ) = (5, 3) case.

Further following our process for choosing which initial flavors occupy which initial momentum
mode, as we described above, when we have (Ne, Nµ) = (4, 4), we end up with the left graph in Fig.
4, showing us that our new system doesn’t converge as cleanly towards a steady state, compared to
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the (Ne, Nµ) = (5, 3) system. In an attempt to further explore the effect that our initial conditions
have on our (Ne, Nµ) = (4, 4) system, we alter which flavors α occupy which initial momentum
modes pi, from having the initial e flavored neutrinos occupying the modes z6, z9, z11, and z13, with
the µ flavored neutrinos occupying the remaining initial momentum modes, to instead having the
initial e flavored neutrinos occupy the modes z6, z9, z21, and z26. Doing this results in a much finer
convergence towards some steady state, as can be seen by the right graph in Fig. 4. Both of these
(Ne, Nµ) = (4, 4) systems share the exact same effective Hilbert space, of dimension dh = 1260, so
this difference is quite unexpected and will require further investigation.

Figure 4: Time evolved N+
i N observables for two different 8-body neutrino systems. Each system

occupies the same initial momentum modes and has the same number of each neutrino flavor,
Ne = 4 and Nµ = 4. The two initial conditions differ only by which flavor of neutrino occupies
each of the initial momentum modes. Both systems share the same exact Hilbert space, with
dh = 1260. Left graph: Initial e flavored neutrinos occupy modes z6, z9, z11, and z13, while the µ
flavored neutrinos occupy the remaining modes. Right graph: Initial e flavored neutrinos occupy
modes z6, z9, z21, and z26, while the µ flavored neutrinos occupy the remaining modes.

2.3 Microcanonical Ensemble
It is now useful to introduce the microcanonical ensemble for the quantum many-body neutrino
systems we are studying. The microcanonical ensemble is a statistical tool we can use to find the
expected values of observables O of our dense neutrino systems when they are in equilibrium, which
we calculate using the formula Tr[ρmcO], where ρmc is the density operator for the microcanonical
ensemble [1]. Since each of the many-body basis states |n⟩ in our systems of interest all have the
same number of each flavor of neutrino, Ne and Nµ, as well as the same total energy, they are
all equally probable in a microcanonical ensemble. Thus, we can write the corresponding density
operator as

ρmc =
1

dh

dh∑
n=1

|n⟩ ⟨n| . (26)

We then use this density operator calculate the equilibrium expectation values of the N+
i N ob-

servables of our neutrino systems [1]:

Tr[ρmcN
+
i N ] =

1

dh

dh∑
n=1

⟨n|N+
i |n⟩ . (27)

We found that the equilibrium expectation values of the N+
i N observables are the same for

all of the different 8-body neutrino systems that we investigated, as can been observed in Fig.
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5. We found this to be somewhat surprising, since each successive Hilbert space is significantly
larger than the previous one, as we gradually transition from (Ne, Nµ) = (8, 0) to (Ne, Nµ) = (4, 4).
Even more surprisingly, the expectation values for the N+

i N observables of our time evolved 8-
body systems seem to be converging to a few values that are slightly off from their equilibrium
expectation values. This is much more obvious when we take the difference between the two sets
of values, as seen in Fig. 6.

Figure 5: Microcanonical ensemble N+
i N observables for our N = 8 neutrino system. Left graph:

the number of allowed electron neutrinos and muon neutrinos are Ne = 4 and Nµ = 4, respectively,
resulting in a Hilbert space of size dh = 1260. Right graph: the number of allowed electron
neutrinos and muon neutrinos are Ne = 8 and Nµ = 0, respectively, resulting in a Hilbert space of
size dh = 14.

Figure 6: Difference between the microcanonical ensemble N+
i N observables and the time evolved

N+
i N observables for two different 8-body neutrino systems. Each system occupies the same initial

momentum modes and has the same number of each flavor, Ne = 4 and Nµ = 4. Left graph: Initial
e flavored neutrinos occupy modes z6, z9, z11, and z13, while the µ flavored neutrinos occupy the
remaining modes. Right graph: Initial e flavored neutrinos occupy modes z6, z9, z21, and z26, while
the µ flavored neutrinos occupy the remaining modes.

3 Future Work
There are still several open questions surrounding the results which we have explored above. First
and foremost, we must further examine why we are not seeing a cleaner convergence towards the
equilibrium expectation values of the N+N observables, which we found using the microcanonical
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ensemble. Additionally, the above results suggest that more work is needed to understand why our
choice of initial conditions has such a drastic impact on how well our neutrino system converges.
Indeed, it is clear the the next major step forward for this project is for us to further study the
theoretical aspects of the thermalization/equilibration processes of these systems. To that end,
we also plan to employ the use of more observables, such as those related to the flavor occupation
numbers associated with each of the momenta of our systems, in future simulations.

Another important future step of this project is to investigate the case where we have three
possible flavors of neutrinos, and where we gradually transition from a system of just a single
neutrino flavor, to a system of two flavors, and then finally to a system which allows for all three
flavors, while accounting for total flavor conservation of the system. If time permits, it may also
be useful to explore systems with even more neutrino flavors, such as four or five flavors.

Finally, it is important to recognize that all of our current results were obtained using only the
neutrino-neutrino interaction term of the Hamiltonian, Hνν , and that we neglected all other terms,
such as the vacuum oscillation term, Hvacuum. Although the Hνν term is expected to dominate in
a dense neutrino gas, there are still going to be vacuum oscillations which may have some impact
on our thermalization processes. Including vacuum oscillations would allow for our dense neutrino
systems to violate total flavor conservation, thereby drastically increase the size of their respective
Hilbert spaces. Therefore, another important future step of this project is to include those other
terms to compare with the results which we have obtained thus far.
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