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Abstract

Neutrino flavor evolution in dense astrophysical media, such as binary neutron star merg-
ers and core-collapse supernovae, is sensitive to neutrino-matter interactions. Dense media
are theoretically predicted to exhibit appreciable neutrino-neutrino interaction effects due to
the high number density of neutrinos. In this project, we derive matter-neutrino interaction
Hamiltonian terms from the Standard Model effective Lagrangian, and discuss plans to de-
velop a numerical simulation that includes these matter terms. Until recently, simulations
of neutrino many-body systems have exclusively used a truncated Hamiltonian that neglects
terms that mediate momentum changing scattering processes. We combine these self inter-
action Hamiltonian terms with the terms that mediate scattering off electrons and nucleons,
treating these matter particles as a classical background field. With this Hamiltonian, we
study neutrino many-body evolution in a finite, isotropic, inhomogeneous medium in equi-
librium. This framework aims to capture effects such as the Mikheyev-Smirnov-Wolfenstein
(MSW) resonance in a many-body context, opening the door to future investigations of flavor
evolution in extreme astrophysical conditions.
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1 Introduction and Background

1.1 Introduction
The neutrino is a nearly massless particle that experiences a phenomenon that no other Standard
Model particle does: flavor oscillation. In the last decades the study of neutrino flavor evolution
has been ongoing, though primarily in a one-body context. Neutrino flavor evolution in hot and
dense astrophysical media is of particular interest as it probes fundamental questions in our un-
derstanding of nuclear synthesis, in both the early universe and from core collapse supernovae or
neutron star mergers. Typically, astrophysical neutrinos are modeled using the Quantum Kinetic
Equations (QKEs), but recent publications question the validity of the QKEs since they are de-
rived using a one body approach and thus may leave out vital many-body effects [1].

Until recently, all approaches to neutrino many-body systems have used the truncated Hamilto-
nian, H(T )

νν , which only mediates forward momentum changing processes (processes which preserve
or swap the momentum of two neutrinos). In recent years it has been argued that use of the trun-
cated Hamiltonian may not be valid, and as a response a first-principles treatment of many-body
neutrino systems with the full Hamiltonian including non-forward scattering terms, H(F )

νν , has been
developed in reference [2]. In this project we closely follow the framework and formalism developed
in [2], and extend the treatment to account for neutrino-matter interactions, which are prevalent
in astrophysical media of interest that are dense in matter. By doing this we aim to contribute to
the broader development of a more realistic approach to quantum many-body neutrino systems in
an astrophysical context.

1.2 Background on Matter Effects
Exploring how neutrinos interact with matter as they propagate is key to expanding our under-
standing of many-body neutrino systems, and thus nuclear synthesis in hot and dense astrophysical
media. Two classic examples which are of vital importance to neutrino experiments today are so-
lar neutrinos created via nuclear processes in the Sun, who traverse a significant amount of solar
matter before reaching detectors on earth, and atmospheric neutrinos, produced by cosmic rays,
that could pass through the entire earth before reaching a detector on the other side. Although
neutrino-matter interactions are extremely weak, there is good reason to believe that their cumu-
lative effects can be quite significant, particularly in dense media [3]. To good approximation, one
can consider matter as a sea of electrons and nucleons, as quark degrees of freedom are negligible
in the neutrino energy scales we consider (� 100 GeV) [4].

The allowed forward elastic scattering processes that a neutrino can undergo in a sea of matter
are depicted in Fig. 1. In media we are interested in, the muon and tau number density is
essentially zero, so electron-flavor neutrinos are the only flavor which undergoes the charged-
current W-exchange interaction depicted in Fig. (5) (a). Additionally, all neutrinos regardless of
flavor can undergo the neutral-current Z-exchange shown in Fig. (5) (b). These give rise to an
interaction potential energy, which is flavor dependent because process (a) only affects electron-
flavor neutrinos. If we consider solar neutrinos that are created via the process p+p → 2H+e++νe,
at the point of creation the neutrino flux would be composed primarily of electron-flavor neutrinos.
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Figure 1: Possible neutrino forward scattering interactions with matter (a) Charged-current via
W− exchange. Only occurs for electron flavor neutrinos. (b) Neutral-current via Z0 exchange.
Occurs for any flavor.

Models have been constructed to explore the effects of the interactions in Fig. 1 on the flavor
evolution of single body solar neutrino systems as they propagate from the center of the Sun to its
edge [3]. Notably, the Sun Hamiltonian takes on a form identical to the vacuum Hamiltonian, but
with different parameters which depend on the number density of matter at a given point. This
model produces the so-called Mikheyev-Smirnov-Wolfenstein (MSW) effect in which electron-flavor
neutrinos created via nuclear processes within the Sun are almost totally converted to muon-flavor
neutrinos [5, 6]. The varying number density of matter across the width of the Sun gives rise to
a resonance radius at which flavor mixing is maximal, whereas the rest of the time the mixing is
minimal [3]. This is graphically depicted in Fig. 2. In this project, we aim to create a framework
in which we can reproduce and observe how matter effects such as MSW manifest themselves in a
many-body context.

Figure 2: Efficient conversion of neutrinos via MSW effect. νe are born near the center of the Sun
(top right) where mixing is minimal until a resonance radius is reached, where nearly all νe are
converted to νµ. Then mixing becomes minimal once again as the neutrino travels away from the
critical resonance radius and makes its way to the outer edge of the Sun. Adapted from [3] Fig. 6
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2 Results

2.1 Formalism
In what follows we adhere closely to the formalism developed in [2]. In systems where the typical
energy of a neutrino is much less than the electroweak scale, the Hamiltonian takes the form

H = Hkin +Hνν +Hν−m (1)

From now on we will limit our discussion to Hν−m, and use results for Hkin and Hνν from [2].
We now introduce some notation to facilitate the derivation in the following section. We expand
the neutrino fields in terms of helicity 4-spinors and creation/annihilation operators in the mass
basis

νi(x) =
∑
h=±

∫
d3p

(2π)3

(
u(p, h)ai(p, h)e

−ipx + v(p, h)b†i (p, h)e
ipx
)

(2)

where ai(p, h) and bi(p, h) are creation/annihilation operators and u(p, h) and v(p, h) are helicity
4-spinors that correspond to neutrinos and antineutrinos respectively. The label h ∈ {+,−} refers
to helicity and i ∈ 1, 2 refers to the mass eigenstate. We normalize the creation and annihilation
operators to have mass dimension -3/2 and satisfy the commutation relation:

{aα(p, h), a†β(p
′, h′)} = (2π)3δ(3)(p− p′)δhh′δαβ (3)

Additionally, the spinors are dimensionless and normalized:

u†(p, h)u(p, h′) = v†(p, h)v(p, h′) = δhh′ (4)

The helicity 4-spinors read as follows

u(p,+) =

√
E + |p|
2E

(
r(p)ξ+(p̂)
ξ+(p̂)

)
, u(p,−) =

√
E + |p|
2E

(
ξ−(p̂)

r(p)ξ−(p̂)

)
v(p,+) =

√
E + |p|
2E

(
ξ−(p̂)

−r(p)ξ−(p̂)

)
, v(p,−) =

√
E + |p|
2E

(
−r(p)ξ+(p̂)

ξ+(p̂)

) (5)

where E =
√

p2 +m2 and r(p) = m/(E + |p|).
We then introduce the helicity Pauli spinors which obey the identity (−→σ · p̂)ξ±(p̂) = ±ξ±(p̂)

ξ+(p̂) =

(
cos θp

2

eiφp sin
θp
2

)
, ξ−(p̂) =

(
−e−iφp sin

θp
2

cos θp
2

)
(6)

where θp and φp are the polar and azimuthal angles of p̂ = p
|p| .

Since we ignore antineutrinos, we include only the left-helicity creation and annihilation oper-
ators. So ai(p,−) becomes ai(p).

Additionally, we write down the basis change relation between mass and flavor bases, as it is
convenient to express the Hamiltonian in the flavor basis

ae(p) = cos θ a1(p) + sin θ a2(p)

aµ(p) = − sin θ a1(p) + cos θ a2(p)
(7)
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2.2 Matter Hamiltonian
In the case of neutrinos in astrophysical environments of interest, we replace quark degrees of
freedom with nucleon degrees of freedom since the energy of an average neutrino is well below the
electroweak scale. Thus, the Standard Model effective Lagrangian terms that mediate neutrino-
neutrino and neutrino-matter interactions expressed in terms of 4-spinors read [4] (repeated indices
are summed over):

Lνν = −GF√
2
ν̄αγµPLναν̄βγ

µPLνβ, (8)

Lνe = −2
√
2GF (ν̄αγµPLYLναēγ

µPLe+ ν̄αγµPLYRναēγ
µPRe), (9)

LνN = −
√
2GF

∑
N=p,n

ν̄αγµPLναN̄γµ(C
(N)
V − C

(N)
A γ5)N, (10)

where the gamma matrices are given by

γ0 =

(
0 σ0

σ0 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3 (11)

the projection operators PL,R = (1∓ γ5)/2 and

YL =

1
2
+ sin2 θW 0 0

0 −1
2
+ sin2 θW 0

0 0 −1
2
+ sin2 θW

 , YR = sin2 θW × 1 (12)

With gA ∼= 1.27, the nucleon couplings are given by

C
(p)
V =

1

2
− 2 sin2(θW ), C

(n)
V = −1

2

C
(p)
A =

gA
2
, C

(n)
A = −gA

2

(13)

We first consider Hνe. Converting the Lagrangian density into its corresponding Hamiltonian,
we get

Hνe = 2
√
2GF

∫
dx3(ν̄αγµPLYLναēγ

µPLe+ ν̄αγµPLYRναēγ
µPRe) (14)

Treating the electrons as an isotropic classical mean field background, we replace ēγµPLe and
ēγµPRe with their expectation values 〈ēγµPLe〉 and 〈ēγµPRe〉. In unpolarized matter left and right
handed electrons populate the medium in equal numbers, so we have

〈ēγµPLe〉 = 〈ēγµPRe〉 =
1

2
〈ēγµe〉 (15)

Under our assumption of isotropy, only the µ = 0 density component survives

〈ēγµe〉 = 〈ēγ0e〉δµ0 = 〈n̂e(x)〉δµ0 = ne(x)δ
µ0 (16)

where n̂(x) is the number density operator. So our Hamiltonian becomes
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Hνe =
√
2GF

∫
dx3(ν̄αγ0PLYLνα + ν̄αγ0PLYRνα)n(x) (17)

We now pause to consider HνN . Rewriting the Lagrangian density in terms of its corresponding
Hamiltonian, we get

HνN =
√
2GF

∫
dx3

∑
N=p,n

ν̄αγµPLναN̄γµ(C
(N)
V − C

(N)
A γ5)N, (18)

By similarly treating nucleons as an isotropic classical mean field background, we take the
expectation value of the term bilinear in the nucleon fields. With the assumption of isotropy the
axial term C

(N)
A γ5 dies, and the Hamiltonian becomes

HνN =
√
2GF

∫
dx3

∑
N=p,n

ν̄αγ0PLναC
(N)
V nN(x), (19)

We now expand the electron and nucleon Hamiltonians in terms of creation and annihilation
operatros in the flavor basis using Eqs. (2, 5, 6, 11, 12). Imposing the ultra-relitivistic limit where
mi/|p| � 1, and considering the two flavor case of elecron and muon flavor neutrinos, Hνe and
HνN become

Hνe =
√
2GF

∫
d3x

dp′

(2π)3
dp

(2π)3
ne(x)e

ix(p−p′)h(p′,p)

×

[(
2 sin2 θW + 1

2

)
a†e(p

′)ae(p) +
(
2 sin2 θW − 1

2

)
a†µ(p

′)aµ(p)

]
(20)

HνN =
√
2GF

∫
d3x

dp′

(2π)3
dp

(2π)3
eix(p−p′)h(p′,p)

×

[(
1
2
− 2 sin2 θW

)
np(x)− 1

2
nn(x)

]
a†α(p

′)aα(p) (21)

where the helicity 4-spinor overlap is

h(p′,p) = ei(φp′−φp) sin(
θp′

2
) sin(

θp
2
) + cos(

θp′

2
) cos(

θp
2
) (22)

Immediately apparent is the fact that our Hν−m terms are quadratic in our creation and
annihilation operators, which is in stark contrast to Hνν , which is quartic in the operators [2],
although they are both interaction potential terms.

As in [2], we now adapt our system to a box of finite volume V. Our continuous 3-momenta
now become discrete triplets of integers according to the relation (p)x,y,z = [(2π)/L](zp)x,y,z, and
the continuous integrals take on the form of discrete sums according to∫

d3p

(2π)3
→ 1

V

∑
zp

. (23)

.

6



2.3 Fock Space
Using a nearly identical setup to [2], we work in a second quantized Fock space. Given momentum
modes pi (i ∈ 1, ..., k) and the flavor label α (α ∈ e, µ), each state is specified by its occupied
discretized three-momentum, and flavor. In the system there are 2k single-particle states, and
each single particle state can be either occupied or unoccupied. Thus, the dimension of the Fock
space is 22k. Since our Hamiltonian preserves the total number of neutrinos, we work with fixed
N , where

N =
k∑

i=1

∑
α=e,µ

niα (24)

and the dimension of the space is

dN,k =

(
2k

N

)
. (25)

The dN,k basis vectors are labeled by

n = {n1e, n1µ, ..., nke, nkµ} , (26)

We define |n〉 as a Slater Determinant of N single-particle states that constitute our many-body
system. For example, the normalized basis state with neutrinos (p1, e), (p1, µ), and (p2, e) is

|n〉 = a†e(p1)√
V

a†µ(p1)√
V

a†e(p2)√
V

|0〉. (27)

The conjugate state is obtained by applying the annihilation operators in reverse order, e.g.

〈n| = 〈0|ae(p2)√
V

aµ(p1)√
V

ae(p1)√
V

, (28)

which ensures 〈n|m〉 = δn,m. We have thus defined an orthonormal basis.
Applying aα(pi) to a basis vector |n〉 results in

aα(pi)|n〉 = V 1/2fn,i,α δniα,1 |n[iα]〉, (29)

where
n[iα] = n with niα → 0 (30)

and
fn,i,α = (−1)

∑
(j,β)<(i,α) njβ . (31)

In Eq. 31, the f -factors account for the fermionic antisymmetry of the wave function; when a†

or a is applied to a state, we pick up a number of factors of −1 equal to the number of single-particle
states with non-zero occupation numbers preceding ni,α according to our ordering scheme (order of
increasing momenta from left to right, where electron labels precede muon labels). The Kronecker
deltas encode action of creation or annihilation. If the corresponding occupation number of the
state was zero, the Kronecker delta evaluates to zero and the state vanishes. If it were non-zero,
the Kronecker delta evaluates to one and the state survives. For a more detailed description of the
Fock space see Ref. [2].
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2.4 Hamiltonian Matrix Elements
We now write down the matrix elements of Hνe and HνN in the occupation number basis. Using
the notation developed in the previous section, the full matter Hamiltonian, including electron and
nucleon terms, Hν−m is as follows (we make the sums explicit for clarity)

〈m|Hν−m|n〉 =
√
2GF

1

V

∑
i

∑
j

∑
α

∫
d3xh(pi,pj)e

ix·(pj−pi)

×

[
καne(x) +

(
1
2
− 2 sin2 θW

)
np(x)− 1

2
nn(x)

]

×

(
fm,i,α δmi,α,1

)(
fn,j,α δnj,α,1

)
〈m[iα]|n[jα]〉

(32)

where

κe,µ = 2 sin2 θW ± 1

2
, (33)

and

pi =
2π

L
zi. (34)

3 Future Direction

3.1 Development of Numerical Simulation
Having derived from first principles the Hamiltonian for modeling many-body neutrino systems
in matter, the next step is to include this matter term in numerical simulations. First we will
write and adapt code from [2] to simulate astrophysical many-body quantum neutrino systems.
We will then conduct a study in which we will vary parameters such as the number density of
electrons and nucleons over a given volume. We can tune these parameters to model different
astrophysical media, and we expect them to have an appreciable effect on the flavor evolution of
neutrino systems. For instance, if the number density was too low at the center of the Sun and the
change in number density of matter too little between the center and edge of the Sun, we predict
that we would not observe the MSW effect [3]. The goal is to reproduce and quantify the effects
of neutrino-matter interactions.

3.2 Varying Number of Neutrino Flavors
In the future we plan to collaborate with the project INTURN 25-4 to explore the effects of matter
interactions in the context of neutrino systems with greater than two flavors. Combining the
two frameworks, we hope to develop a more realistic and robust model for flavor evolution of
many-body neutrino systems.
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