
Goal
This project develops a Bayesian analysis framework accelerated by machine learning. 
Two phases of the project are:
 
[Phase 1] Develop a machine learning algorithm, with self-learning, for finding 
normalizing flows for Bayesian posterior distributions. 

[Phase 2] As a demonstration, apply the algorithm to analysis of properties of neutrinos 
in the Standard Model.

Bayesian Uncertainty Quantification Via Machine Learning
Lindsey Schneider (lsch13@uw.edu)
Mentor: Yukari Yamauchi (yyama122@uw.edu)

Background
Uncertainty quantification (UQ) is an important step in physics research. In order to 
bridge the gap between experimental data and theoretical predictions, it is essential to 
calibrate model parameters according to their uncertainty. The model parameters (ω) 
are represented by a posterior distribution determined by Bayesian analysis. 

Calculating the uncertainty requires sampling from from a high dimensional probability 
distribution, so it is essential to use a sampling method which is efficient and produces 
independent samples. 

Here you can see that the traditional method (MCMC) sampling is an iterative 
process, and doesn’t produce independent samples.

Normalizing Flows
A normalizing flow is a map from a Gaussian distribution to a non-trivial 
distribution. A normalizing flow f is the change of variables:

where x = f(y). To sample from a normalizing flow, you need to sample from the 
Gaussian distribution g and then apply the map to get samples from the goal 
distribution p.

        Affine
The purpose of this layer is to combine multiple MLP layers which can have different 
purposes (scaling, shifting), masking certain parameters during training so that they 
will be independent of each other, and ensuring one-to-one mapping from y to x 
space.

Here, S is a scaling MLP, and T is a translation (shifting) MLP.

RealNVP
Here, we combine multiple Affine layers with various masking  to create the full 
neural network. In the developed code, we use 10 Affine layers.

Training: Loss Function
The purpose of a loss function is to tune the parameters. Here, we tune the parameters 
of S, T in each Affine layer by Jeffrey’s divergence:

multiplied by a fixed learning rate (1e-3). This calculates the difference between our 
current model and the goal distribution. We assume we can get the value of the goal 
distribution at a given point.

-> Map x = f(y) ->

y-space Gaussian x-space goal distribution

Methods: Constructing the Neural Network
We must construct a neural network to train. The training process consists of 
tuning the parameters of this network based on a loss function. The parameters 
we will use come from the following classes:

Benefits of NF vs MCMC
Normalizing flows are more efficient than MCMC 
because you need to take fewer samples to get 
independent samples.

NF is also more efficient in storage and 
reusability. You only need to store the trained 
weights rather than samples, and you can get 
samples instantly.

Below is an example of a trained NF for a 2D test distribution compared to 
MCMC. In addition to being efficient, NF is also accurate

Accuracy of NF 
compared to expected 
values

Results: Application to Neutrino Physics
- To test our neural network algorithm, we trained normalizing flows for the NuFIT 6.0 

global fit data.
- Note: in addition to previously discussed neural network layers, we introduced 

additional ReLU layers
- We trained the parameters for the masses (Δm

21
, Δm

32
) and the standard 

parametrization of the 3 × 3 unitary leptonic mixing matrix

- where c
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- Here, we can see that the loss during training approaches 0

- The blue line is the initial distribution before training. We initialize NF to be a 
distribution in the range we expect.

- Black curve is the exact distribution taken from the NuFIT 6.0 global fit data,, and the 
red distribution is our NF trained map. We can see that these agree.

- We can see that the peaks of these distributions agree with the expected inverted 
ordering data (in NuFit-6.0 paper).
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Final Scaling/Shifting Layer (Blue)
The purpose of this final layer at the end 
of RealNVP is to capture the overall size 
and spread of the parameters based on 
the prior distribution (see background 
section). This consists of one linear layer.

Multi-Layer Perceptron (MLP)
This class consists of alternating 
linear parameter layers and 
non-linear activation functions. The 
final layer is the output.

Red: MCMC. L is autocorrelation length. 
Bule: NF. E is effective sampling size. 


