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Abstract

This report follows the plans and accomplishments made over the summer for INTURN
project 24-6. This specific project goes over extreme equations of state within binary neutron
star mergers. However in this report, we do not touch upon any interactivity with modeling or
simulating BNS merger events. Instead this report is about the development of constructing an
Equation of State for a singular compact star (either a White Dwarf or Neutron Star) and then
using that EOS to then pass through a TOV Sovler to generate a Mass vs. Radius curve in units
of Solar Masses and kilometers. To do this, Python was used to construct Equations of State
based on generated tables of values for various parameters like fermi momentum and number
densities.

Introduction
The work that has been done so far through this project has been both enlightening and a

challenge. So far what has been done in this project has consisted of reading other papers on sound
speeds and neutron stars, studying textbook material on equations of state, and even some lectures
on Numerical Relativity which will be useful for the future directions we wish to take in this project.
I want to proceed through this paper as less of a mundane status update but also as the thought
process going through the project and some of the struggles or minor successes had along the way.

Modeling the Equation of State is one of the major components to working with the Structure
Equations for compact stars. Stellar objects in general hold hydostatic equilibrium, which means
that a star is able to withstand the force of gravity to prevent collapse by countering with internal
pressure. In compacts stars, White Dwarfs and Neutron Stars, there is no more thermal pressure
which withstands collapse but instead it is the nucleons themselves that resist collapse. This
pressure is determined by the systems energy density which can be calculated by knowing the
systems number density and fermi momenta. In a White Dwarf, this energy density comes from
the massive nucleons present which the pressure which resists the collapsing of gravity comes from
electrons, which is what is called electron degeneracy pressure in White Dwarfs.

In order to know about how the pressure changes in a star when modeling the entire object, we
must know how the energy density changes as well which is what causes pressure changes. That is
why the Equation of State is so important. It keeps track of the interplay between energy density
and pressure so that stellar modelling and simulation can be performed. The Equation of State
is also what allows us to work with the structure equations especially when general relativistic
corrections are included. The structure equations then give us a full model of how mass and radius
change due to internal factors like number density and central pressure.
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A Brief Mention on Units

It is easiest to pass everything through natural units, since all the units involved for equations will
only be in MeV to some power or not. All while allowing unity amongst all fundamental constants.
ℏ = 𝑐 = 𝑘𝑏 = 1
Determining units and tracking them is tricky, especially when dealing with an alternate system of
units like natural units for example. Working with them requires some good in depth understanding
about how units translate across equations and systems. The upside to natural units and going
between that and say cgs or SI is that all fundamental constants are taken out and simplifies
calculations. It is interesting to see how then the final step for presenting data in this case is to
figure out how to bring the units back to something that makes sense.

Equation of State and Theory
The construction of the equation of state for these compact stars involves finding properties about

any fermions involved in the system. Each fermion has their own contributions towards the total
energy density and pressure with a given fermi momentum or number density for each. Knowing
either one of them will give the other because of how number density , 𝑛 and fermi momentum 𝑝𝐹
are related.

𝑛 =
𝑝𝐹

3𝜋2 (1)

This equation can be used to either find the fermi momentum using a given number density or vice
verse. Regardless of this, it is the fermi momentum that is used to find its corresponding energy
density and pressure. How exactly these two quantities are related comes from their thermodynamic
relationship.
In a compact star, we are able to assume degeneracy because at the cores of these stars, the pressures
are extremely high and therefore fermions have to take up the lowest energy states possible without
violating Pauli’s exclusion principle. The conditions of degeneracy are also in line with the
conditions of fermions when at extremely low temperatures since they are also found in their lowest
energy states.
Assuming that 𝑇 = 0 in the first law of thermodynamics we can find that 𝑃 = 𝜕𝑈

𝜕𝑉
= 𝑛𝜇 − 𝜖 . So

we see that pressure is the difference of the chemical potential (which is just the change in energy
density with respect to number density) and energy density. This is safe for us to assume that the
pressure of the system is based upon the energy density.
The equation for energy density and pressure for each fermion is

𝜖 (𝑘) = 𝛾

2𝜋2

∫ 𝑘

0

√︁
(𝑘2 + 𝑚2)𝑘2𝑑𝑝 (2)

𝑃(𝑘) = 1
3
𝛾

2𝜋2

∫ 𝑘

0

𝑘2√︁
(𝑘2 + 𝑚2)

𝑘2𝑑𝑝 (3)

These two equations are what produce our Equation of State (Shapiro & Teukolsky 1983). By
modeling a range of difference fermi momenta we can generate a plot which can then be interpolated
over or in an even more creative manner, a function can be generated in the form of a polytrope
which will truly be the equation of state.



Generating Equations of State
This section is being treated on a case by case basis which will first look at the modeling process

of White Dwarfs and then it will look into the process of modeling a full Neutron Star with all three
fermions as individual contributors.

White Dwarf Equation of State

When coding the White Dwarfs EOS, I had started out by using cgs units instead of natural units
in order to maintain a finer concept of units while progressing through the various equations and
plotting. In the given paper, Neutron Stars for Undergraduates, it was suggested that the range
of fermi momentum to be plotted would be between 0 and 2𝑚𝑒. This is mainly due in part to
the relativistic parameter which is used in the equations of energy density and pressure where the
integral is solved and instead uses this parameter,𝑥, instead of explicitly using 𝑘 and 𝑚

The energy density contribution by electrons in a white dwarf is similar to the equation above.
The difference between them is that the former equation uses 𝛾 which is in place to denote the
degeneracy of momentum states. However the entire constant set outside of the integral can be
reduced to a single factor of 𝜖 − 0 which is determined by some choice or in the convenience of the
equation and its variables. In the case for White Dwarfs 𝜖0 =

𝑚4
𝑒𝑐

5

𝜋2ℏ5 . And the equations for energy
density and pressure are (where 𝑥 = 𝑘𝐹

𝑚𝑒𝑐
)

𝜖 (𝑥) = 𝜖0
8
[𝑥(2𝑥2 + 1) (1 + 𝑥2) 1

2 − 𝑠𝑖𝑛ℎ−1(𝑥)] (4)

𝑃(𝑥) = 𝜖0
72

[𝑥(2𝑥2

3
− 1) (1 + 𝑥2) 1

2 + 𝑠𝑖𝑛ℎ−1(𝑥)] (5)

Although these are in cgs units and not in natural units as I had mentioned before, it still provides a
legible curve that shows how pressure changes due to energy density. Thankfully these equations
were derived from their integral form and can be used not just here in a pure electron gas but in the
upcoming models that need it.(Silbar & Reddy 2004)

Neutron Star Equation of State

The Neutron Star Equation of State was one of the more trickier approaches when it comes to
modeling an EOS. In the White Dwarf case, there was really only one fermion that was being
accounted for, but for Neutron Stars and using the Fermi Gas Model all three fermions are included
in the model. Because this is an Ideal Fermi Gas, none of these particles have nuclear interactions.
Although this does restrict us from having a deeper more comprehensive understanding of the
Neutron Stars core, we still retain other conditions seen in Neutron Stars.Mainly, the properties that
are seen are charge neutrality and weak interaction equilibrium or 𝛽 equilibrium.
Neutron Stars possess charge neutrality, which means that at the cores there is a zero net charge. That
being said, we can assume that there must be equal numbers of protons and electrons within. 𝑛𝑝 = 𝑛𝑒.
And since there is proportional relationship between number densities and fermi momentum, they
must also be equal to each other 𝑘𝐹,𝑝 = 𝑘𝐹,𝑒.
Free neutrons within Neutron Stars will undergo a weak decay which causes a neutron to decay
into a proton, electron, and an antineutrino. Because charge neutrality is a property of the neutron
star, there must be an inverse reaction which takes place in the form of electron capturing. This



Fig. 1.— This is a plot of the energy density and pressure in an ideal Fermi Gas composed of just Electrons.
Both of which have units of ergs/𝑐𝑚3. The pressure here is due to electron degeneracy pressure and there is
a higher amount of nucleons present which is what mainly contributes to the energy density.

reaction takes a proton and electron to produce a neutron and a neutrino.

𝑛→ 𝑝 + 𝑒− + 𝑣̄𝑒 (6)

𝑝 + 𝑒 → 𝑛 + 𝑣𝑒 (7)

The reactions between electron capture and neutron decay exhibit beta equilibrium within a
Neutron Star. To quantify this, we use a relationship between all three fermions chemical potentials
to show that their interactions are in equilibrium.

𝜇𝑛 = 𝜇𝑝 + 𝜇𝑒 (8)

Using this equality it is easy to find an equation that finds the fermi momentum of protons based
on that of neutrons. When writing this code and determining the equation to use, any instance of
𝑘𝐹,𝑒 is easily replaced with 𝑘𝐹,𝑝 when used in the chemical equilibrium formula where,
𝜇 =

√︃
𝑘2
𝐹
+ 𝑚2.

The EOS constructed for Neutron Stars was initially started by two alternate processes. One was
to manually input a range for the relativistic parameter like the ones in equation 4 and 5. The other,
and more favorable method by me, is to use a range of number densities found from data tables



online specific for equations of state. It is a lot more fascinating and practical to use imported data
when running this code for further use. However manually inputting a range for 𝑥𝑛 was the best
method for determining any error or numerical confusion.
Regardless of the method used to obtain the neutrons fermi momentum, the equations used to
determine energy density and pressure, previously for white dwarfs, can also be used to find the
individual energy densities and pressures of the fermions in the neutron star. These can all be
summed to find the total contribution that each has towards the EOS of the Neutron Star which can
be seen in Fig. 2.

Fig. 2.— Equation of State, in natural units, found based upon the sum of individual fermion energy densities
and pressures. The massive pressures here are due to degeneracy pressure just like in white dwarfs but this
term increases very rapidly as opposed to energy density because of how compact Neutron Stars are in their
cores.

TOV Solver
Constructing the TOV Solver code was both a simple process and a careful one much like the

Equation of State code that had been written. First of all, this is when it was realized that the
best way to handle two semi-large blocks of code was to separate them in classes. One for the
construction of the EOS and the other to use that EOS to solve the TOV equation. The final output
of which would be multiple curves that gives information about the Neutron Star being modelled.
However, in this case what is cared about is not one specific Neutron Star but a whole range of
them in order to find what the maximum masses are for a certain radius.

When doing this modelling, the first thing that comes to mind is where exactly we are drawing



limits, or more physically, what the boundary conditions are. With pressure, it makes sense that
once we see this value terminate at zero, then we have reached the edge of the star and we can break
out of a loop and extract what the total mass is at that point and therefore what the maximum radius
was for that star. The initial conditions were much more straightforward as we know that the mass
at the very center of the star must begin at zero as we imagine that at this point we have not begun
to collect anything about mass. And of course we are at a point where the radius is zero. As I have
stated, pretty straightforward with this initial setup.

Structure Equations and the TOV Equation

Taking a step back to classic Newtonian mechanics, stars can in fact be modelled without
considered anything higher level like general relativity for example. A star is held together in hydro-
static equilibrium, meaning that a star pushes against its own gravity to avoid collapse by pressure
either through thermonuclear processes or degeneracy pressure in cases where thermonuclear
processes terminate completely.

𝑑𝑝

𝑑𝑟
= −𝐺𝜌(𝑟)𝑀 (𝑟)

𝑟2 (9)

𝑑𝑀

𝑑𝑟
= 4𝜋𝑟2𝜌(𝑟) (10)

These are the coupled differential equations for hydro-static equilibrium that use mass density
to determine the changes of mass and pressure alongside mass itself in changes in pressure with
respect to 𝑟 .
It isn’t too hard to assume that as you slowly move from the center of a star, something that is not
recommended by any means, the mass density decreases by some amount and at some rate. This of
course is determined by the equation of state, however the one that I had constructed uses energy
density instead. This is a simple fix to include it into the classical newtonian equations since we
can use the mass-energy equation in a way that shows the relationship between mass density and
energy density 𝜖 ≈ 𝜌𝑐2.
Besides this minor change we could expect that the mass of a star will rise fast and begin to trait
off at some asymptotic where the maximum mass is reached, and that the pressure will do the same
but in a continuous decrease towards zero.

This all finally brings us to the TOV Equation. In White Dwarfs it is not absolutely necessary
to use this form, so instead the classical Newtonian equations for hydro-static equilibrium can be
used with ease. However, the main implication of the TOV is because in Neutron Stars, there is
a significant effect of space-time due to the ratio because mass and the stars radius being large
(or non-negligible)(Silbar & Reddy 2004). Because of this, general relativity must be taken into
account and the GR corrections must be made, but only on the derivative for pressure.

𝑑𝑝

𝑑𝑟
= −𝐺𝜖 (𝑟)𝑀 (𝑟)

𝑐2𝑟2

[
1 + 𝑝(𝑟)

𝜖 (𝑟)

] [
1 + 4𝜋𝑟3𝑝(𝑟)

𝑀 (𝑟)𝑐2

] [
1 − 2𝐺𝑀 (𝑟)

𝑐2𝑟

]−1
(11)

I went ahead and decided to turn the equation into a form that uses dimensionless values of
pressure, energy density, and mass. Much in the same way as what was done in the construction



of the EOS and then plugging in constants back in later on. Its also a lot easier in this way since it
can reduce the equation down to simpler terms.
To start, we take 𝜖 and 𝑝 and divide them both by 𝜖0 which was defined previously. Instead of
having this constant with units of 𝑀𝑒𝑉

𝑓 𝑚3 , we convert these units to become 𝑀⊙
𝑘𝑚3 . This is a lot better

because it makes these units make a lot more sense and digestible.

I will first establish two constants (keeping in mind here that c still is 1, and 𝑀⊙ is also considered
to be equal to 1 since this is the unit of measurement).

𝑅0 =
𝐺𝑀⊙
𝑐2 = 1.47km (12)

𝛽⊙ =
4𝜋
𝑀⊙𝑐2 𝜖⊙ (13)

Here 𝑅0 is equal to one half Schwartzchild radius of the sun. The constant 𝛽⊙ is not too incredibly
special, besides interestingly enough it has a unit of 𝑘𝑚−3 which is the same as number density, but
it does help reduce the TOV equation into this much easier form alongside 𝑅⊙.

𝑑𝑝

𝑑𝑟
= −𝑅0

𝜖 𝑀̄

𝑟2

[
1 + 𝑝

𝜖

] [
1 + 𝛽⊙

𝑟3𝑝

𝑀̄

] [
1 − 2𝑅0𝑀̄

𝑟

]−1
(14)

𝑑𝑀

𝑑𝑟
= 𝛽⊙𝑟

2𝜖 (15)

Both of these equations are fed into a python class that is used to solve the TOV equation for a
given pressure. This given pressure is set to be the central pressure at 𝑟 = 0 where 𝑀 = 0 initially.
Within a stable neutron star, there are central energy densities that can range anywhere between
one-half to around 10 times nuclear energy density according to preexisting literature(Glendenning
1997). Either by inspection or by creating a function based on values obtained, the corresponding
pressure can be found in order to create a list of central pressures.

Polytropic Model

Using python to solve the TOV equation requires knowing what the energy density is from a
given pressure. This is a simple way of explaining it but to do this in code, I use a method of curve
fitting which creates an equation that can account for the wide range of densities within data.

The polytrope is a thermodynamic relationship which can be found in the ideal gas but in this
context it is a relationship in astrophysics which shows how pressure depends on a given density.
This makes sense considering that the pressure in thermodynamics involves the change of energy
density with respect to number density.
In the Neutron Star EOS we can use a double polytrope and can find parameters that can fit the
curve that was generated best.

𝜖 (𝑝) = 𝐾𝑁𝑅𝑝
3
5 + 𝐾𝑅𝑝 (16)

Here we have two components, one corresponding to the non-relativistic regime where Γ = 3
5 , and

the other term is set to a power of 1 because it is simple enough to give an analytic solution when



solving for pressure. When this is done we find the constants, according to the data plotted.

𝜖 (𝑝) = 1.977𝑝
3
5 + 1.001𝑝 (17)

These constants could vary of course depending on the extent of the values plotted, but the power
law still stays consistent.

TOV Solver

By inspection we can see that we will have a range of central pressures between 1 to 103 MeV
fm3

(or 10−4 to 1, when dimensionless). Using this range, which is in agreement with the typical range
stated for energy densities before (additionally, I can expand this range because of some of the
central pressure values used in the Neutron Stars for Undergraduates paper)(Silbar & Reddy 2004),
I can use a logspace command to create a range of values of central pressures to use when solving
for the TOV equation. Creating this was an easy arrangement in my suitable python IDE, and so
were the coupled differentials that can be easily utilized by the solveivp function thanks to scipy.
However, the meticulous part had breached its way into my way.

What was a complicated process soon turned to be a very easy solution and insight into not just
the equation but also the setup of initial conditions itself. One major note about the initial setup
is the obvious, there is no way to make a computer divide by zero, so when it comes to starting
at zero radius or zero mass, instead what needed to be done was to calculate the mass at a small
incremental difference of radius from r = 0 to r = dr. This setup helped manage making sure that
there were proper values for initial mass and radius that aren’t explicitly zero but are the next step
from both being equal to zero.

Fig. 3.— Pressure and Mass changing as a function of radius for a Neutron Star model with a central pressure,
𝑝 = 10−3. These curves are, in a way almost mirror images of each other. We see that pressure decreases at
a fast rate and mass does the opposite at a similar rate.

Now from this, it is possible now to see how the pressure and mass changes as a function of radius
from a given central pressure. After running the script I had written that uses an EOS constructor
and now a TOV Solver, I am able to obtain curves for pressure and mass, both as functions of



radius. Not only this but a wide range of central pressures can be modeled, and all that needs to be
extracted is the maximums of mass and radius for each. This is what has been done for an expanded
range of central pressure to show the relationship between mass and radius for Neutron Stars shown
in Figure 4.

Fig. 4.— Maximum Mass and Radii for a range of central pressures (10−6 < 𝑝𝑐 < 102). There is a region
near about 12 km where a maximum mass is reached. Beyond this, as radius decreases the mass then starts
to decrease as well and soon initiates an in-spiral indicated by the small curl at the end of the curve on the
left. What this means is gravitational collapse for a Neutron Star since it is deemed unstable beyond the point
of the maximum mass.

The Future
Looking back on the progress of this seemingly simple part of the process shows great promise

for what is to be done in the future as far as research and modelling Neutron Stars. What has been
done here is for only single Neutron Stars, however in the future me and John wish to use HPC’s
not only to perform simulations that have more precision but also simulations that include the full
extent of GR and in 3D space. This is especially the ambition for when it comes time to model
Binary Neutron Star mergers, which will have to include GR, especially since what our interest in
here is looking at sound speeds within Neutron Stars.

This research was supported by the INT’s U.S. Department of Energy grant No. DE-FG02-
00ER41132 and the N3AS’s National Science Foundation award No. 2020275.”
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