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Abstract

We develop a machine learning model based on the Structured Variational Autoencoder
(VAE) framework to reconstruct and generate neutron star (NS) equations of state (EOS). The
EOS remains uncertain primarily due to the absence of experimental constraints and the limi-
tations of nuclear theory at supranuclear densities. Our VAE uses an encoder network to map
high-dimensional EOS data into a lower-dimensional latent space, capturing essential physical
features and NS observables. The corresponding decoder network reconstructs the full EOS
from the latent representation with high fidelity. The VAE is trained on a dataset derived from
the Skyrme nuclear model. NS observables, including maximum mass and radius obtained by
solving the Tolman-Oppenheimer-Volkoff equations, are used as supervised latent parameters.
Sampling the latent space allows generation of new, causal and stable EOS models that satisfy
known astronomical constraints while exploring regimes beyond existing theories. This frame-
work supports Bayesian inference of the EOS and enables its integration with multimessenger
data, including gravitational waves from LIGO/Virgo, X-ray pulsar observations from NICER,
and radio pulsar timing measurements of massive NSs. We find that, on the theoretically derived
test set, the decoder reconstructs the supervised NS observables with high fidelity, achieving
mean absolute percentage errors (MAPE) of 0.10% for the maximum mass Mmax and 0.15%
for the radius of a 1.4M⊙ NS, R1.4. Additionally, when analyzing the accuracy of the VAE in
mimicking the SLy4 EOS, we find the VAE decodes a value of Mmax = 2.043± 0.002 M⊙ and
R1.4 = 11.715 ± .0176 km, where the quoted value range correspond to the computed decoder
MAPE. This is in agreement to the exact SLy4-computed values of 2.046 M⊙ and 11.717 km.
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1 Introduction

The cold neutron star (NS) equation of state (EOS) describes the relationship between the pressure
and the energy density at zero temperature in stable matter within a NS [1]. The EOS is well
constrained at low densities near the crust by nuclear theory and experiment, and at asymptotically
high densities beyond those realized in NSs by perturbative QCD. However, the intermediate-to-high
density EOS relevant to NS cores remains highly uncertain [2] [3] [4]. Matter at extreme densities
(up to twice nuclear saturation density) can be described by ab initio nuclear theory frameworks
such as Chiral Effective Field Theory (χEFT) [5]. Additionally, phenomenological models such as
relativistic mean-field and the Skyrme nuclear models can be used to extrapolate nuclear interactions
to higher densities, but these mean field approaches lack higher order quantum corrections to the
many-body forces, and the associated theoretical uncertainties are not quantifiable. In this regime,
phase transitions may play an important role due to the possible emergence of exotic degrees of
freedom (e.g., hyperons or deconfined quarks) [6] [7]. As a result, different theoretical frameworks
can produce EOS that are consistent with low-density constraints yet diverge significantly at higher
densities, leading to large variations in predicted NS masses, radii, and tidal deformabilities. This
uncertainty in the EOS motivates the development of flexible, data-driven approaches that can
systematically explore the space of physically admissible EOS while remaining consistent with both
theoretical constraints and astrophysical observations. Such data driven approaches have, as of late,
largely included machine learning (ML) as a way of rapidly learning, condensing, and scanning a
large parameter space.

In particular, using ML for studying and simulating the NS EOS is a subject of recent interest.
Many works focus on the use of the Gaussian Process (GP) conditioned on theoretical nuclear models
[8] [9] [10]. These studies focus on conditioning the GP on observations to get posterior probability
distributions for EOS parameters and observables such as the radius and maximum mass. Works such
as [3] and [11] used ML to study the relationship between NS observables and the underlying EOS
parameters. In [3], the authors employ the variational autoencoder (VAE) to generate physically
valid NS EOS, incorporating observational data to constrain the possible parameter space. The VAE
is a deep generative model which is capable of combining the uncertainty of multiple frameworks
to constrain the parameter space of the EOS. The primary difference between the GP and the
VAE in this context is that the VAE can be used to generate singular EOS by sampling from
a probability distribution derived from the encoder, whereas the GP is unable. The work of [3]
resulted in the generation of reasonable values for the maximum mass and radius of a 1.4M⊙ NS,
displaying the validity of the VAE in generating NS EOS. In this work, we expand on this VAE-based
approach by systematically analyzing the physical structure and interpretability of the learned latent
space, quantifying how individual latent directions map to variations in the decoded EOS and NS
observables. We train a fully generative VAE model using data derived from the Skyrme nuclear
model, using this input data to calculate theoretical maximum stable NS mass configuration, and
the radius of a 1.4 M⊙ NS which will be used as supervised latent observables during model training.
Once we have a fully trained and generative model, we vary parameters to decode the behavior
of the NS EOS when controlled by 3 parameters rather than the 10 parameters required by the
Skyrme model. By varying these parameters, we can control the behavior of the generated EOS. For
example, for a given EOS, scaling the value of the parameter corresponding to the maximum stable
mass configuration of a NS should provide a stiffer EOS at high densities. Scaling the parameter
corresponding to the radius of a 1.4 M⊙ NS (R1.4) should provide identical EOS for each multiple
of R1.4 except around twice nuclear saturation density, where R1.4 is known to be more sensitive
to changes in the EOS [12] and each EOS will differ. We additionally can vary the learned latent
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parameter(s) zi to test and determine which further properties of the EOS is being controlled by said
parameter. Once the VAE has been validated, it can be used in future studies as a way to constrain
model parameters and simulate EOS rapidly. The paper is organized as follows: in Sec. 2, we discuss
the theoretical formulation behind the input data and EOS reconstruction as well as the structure of
the VAE framework. In Sec. 3, we test the model as discussed above, analyzing the reconstruction
accuracy and mass-radius curve generation capabilities of the framework. In Sec. 4, we summarize
our results and in Sec. 5, we offer potential avenues for future research.

2 Methods

2.1 Energy Density Functional

Before we discuss the VAE, it is necessary to formalize the data that the framework will be trained
on. The VAE is trained on a diverse candidate EOS dataset derived from the Skyrme nuclear model.
The Skyrme model is a phenomenological realization of nuclear density functional theory in which
nuclear interactions are encoded in an effective, density-dependent energy density functional rather
than derived from the bare nucleon–nucleon force [13]. Originally introduced by Tony Skyrme, the
interaction is constructed to reproduce bulk properties of infinite nuclear matter, such as the satu-
ration density, binding energy per nucleon, incompressibility, and symmetry energy, while remaining
computationally tractable for finite nuclei and NSs [14]. The resulting Skyrme energy density func-
tional yields self-consistent mean-field equations whose parameters are calibrated to experimental
nuclear data, rather than to two-body scattering observables .

The Skyrme Hamiltonian density for infinite nuclear matter is written as follows [15]:

HSk =
k5
Fn

10π2m∗
n

+
k5
Fp

10π2m∗
p

+ Hpot(nn, np), (1)

where the first two terms are the kinetic contributions for neutrons and protons including the effective
mass, and Hpot is the potential term given by
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1

2
n2t0

(
1 +

x0

2

)
− 1

2
(n2

n + n2
p)t0

(
1

2
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)
+
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24
nγt3

[
n2(2 + x3) − (n2

n + n2
p)(1 + 2x3)

]
.

(2)

The neutron and proton effective masses are density dependent and given by

mn/p

m∗
n/p

= 1 +
mn/p

4

{
n [t1(2 + x1) + t2(2 + x2)]

+ nn/p [−t1(1 + 2x1) + t2(1 + 2x2)]
}
.

(3)

Although highly successful in describing ground-state properties and collective excitations of
finite nuclei, the Skyrme functional is largely empirical and its extrapolation to the high densities
encountered in NS interiors is uncertain, motivating complementary relativistic and data-driven
approaches [16] [17].
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Table 1: VAE Boundary Value Data

Core–Crust Transition Maximum

Baryon number density nB,cc nmax

Energy density εcc εmax

Pressure Pcc Pmax

2.2 Training Data

We use the Skyrme model discussed in Sec. 2.1 to derive our input EOS training data. The structure
of the input data is an array of dimensions [m, 107], where m is the number of distinct EOS. The
first 101 columns are comprised of sound speed data, with the sound speed c2s given by the following
equation:

c2s(ζ) =
dp

dε
, ζ ≡ ln p, (4)

The final 6 columns that comprise the input data are boundary conditions that set critical components
of the NS structure. This includes theoretical maximum limits of baryon number, energy density,
and pressure at the core of a stable NS, as well as the baryon number, energy density, and pressure
at the core-crust transition. These core-crust transition values are used to smoothly join the target
core EOS to the crust EOS predicted by the Skyrme nuclear model. The boundary value data used
is summarized in Tab. 1. A discussion of how they are calculated is included later in Sec. 2.5. The
entire input data array is then log-scaled to stabilize the training process. To acquire our pressure
values, we define a logarithmically spaced grid as follows;

pi = exp

[
ln pcc +

i

N

(
ln pmax − ln pcc

)]
, (5)

with N = 101 points spanning the interval between the core-crust transition pressure Pcc and
the pressure of a stable maximum-mass configuration NS Pmax. The Skyrme nuclear model is used
to calculate Pcc and Pmax. For each pressure value Pi, the corresponding energy density ε(Pi) is
obtained from the SLy4 EOS table (a specific parametrization of the Skyrme effective nucleon-
nucleon interaction [18] [19]). We then numerically compute the sound speed via a finite-difference
scheme using Eq. (4). This data is then split into smaller datasets that are used for different purposes
during training. The training split is summarized in Tab. 3. The bulk of the data is allocated to
the training dataset, which is used during to minimize the loss function during the VAE training
process. The validation dataset serves to tune hyperparameters and decide when training should be
terminated without biasing the final result. The test dataset is not used at all during training to
calculate gradients or update weightings, and is necessary to evaluate final model performance and
report unbiased reconstruction accuracy.

2.3 Reconstructing EOS from Data

Our primary goal in this work is to create new candidate EOS using sound speed profiles predicted
by our VAE. We use the boundary values discussed in Sec. 2.2 to define the physically valid range of
each EOS sample, allowing the VAE to learn only within the causal and thermodynamically stable
region between the crust–core transition and the maximum central density. To calculate the NS EOS
with the sound speed, we use the following formulation. Starting from Eq. (4), we note that

p = eζ , dp = eζ dζ. (6)
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Substituting (6) into (4) gives

dε =
dp

c2s(ζ)
=

eζ

c2s(ζ)
dζ. (7)

Integrating from a reference state (p0, ε0) to (p, ε),

ε(p) = ε0 +

∫ ln p

ln p0

eζ

c2s(ζ)
dζ, (8)

which is equivalently, in pressure space,

ε(p) = ε0 +

∫ p

p0

1

c2s(ln p′)
dp′. (9)

Where ϵ(p) is the EOS expressed in terms of the energy density as a function of pressure. In
general, Eqns. (8) and (9) have no closed form unless c2s has a simple analytic expression, otherwise
they should be evaluated numerically.

The input training data and output VAE-generated data consists of a set of sampled sound-speed
values {c2s(pi)}101i=1, where pi is calculated using 5, together with thermodynamic boundary conditions
at the core-crust transition and at the maximum density. These sound speed values are spline-
interpolated to obtain a continuous function c2s(ln p). We then solve Eq. (9) using this function to
acquire the corresponding ϵ(p). The baryon number density nB(p) is obtained by integrating the
ODE

d lnnB

d ln p
=

1

ϵ + p

dϵ

d ln p
. (10)

The resulting EOS segment {nB(p), ϵ(p), p} is then joined to the SLy4 crust EOS.

2.4 The TOV Equations

The TOV equations describe the structure of a static NS in hydrodynamical equilibrium [20] [21] [22].
The equations require an input EOS to solve, unless reformulated in a dimensionless form, where the
pressure and energy density are expressed as polynomial functions of a reduced radial coordinate as
in [20]. However, employing an explicit input EOS remains the standard approach for modeling NS
structure. The TOV equations for a spherically symmetric body in static equilibrium are given by,

dp(r)

dr
= − Gϵ(p)m(r)

r2

(
1 +

p(r)

ϵ(p)c2

)(
1 +

4πr3p(r)

m(r)c2

)
×

(
1 − 2Gm(r)

rc2

)−1 (11)

and,

dm(r)

dr
= 4πr2

ϵ(p)

c2
, (12)

where ϵ(p) is the energy density as a function of pressure, and p(r) is the pressure as a function
of radius. In this work, we solve the TOV equations at two seperate stages, prior to and post-
training. Prior to training, we use input EOS as calculated using the Skyrme model to compute
theoretically possible maximum NS masses (Mmax, in M⊙) and radii of 1.4 M⊙ NS (R1.4, in km)
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with the TOV equations, which are used as supervised latent observables during training. We then
solve the equations again post-training, using the sound speed profile c2s(p) generated by the VAE to
solve Eq. (9) and using the corresponding EOS as input to the TOV equations, to again calculate
Mmax and R1.4 and create MR curves for the generated EOS. To create these curves, we pick a
central density and calculate the central pressure for a given EOS. Our TOV solver then uses the
SciPy LSODA method [23] to integrate Eq. (11) and Eq. (12) outward from this central pressure
until the surface pressure approaches zero, yielding the total mass and radius. Repeating this process
across a range of central pressures produces the full MR curve predicted by a given generated EOS.
Once the high-density portion is computed, it is smoothly joined to the SLy4 crust EOS.

2.5 Boundary Condition Computation

We now discuss how we compute the boundary conditions mentioned in Sec. 2.2 and in Tab. 1.
These values are computed using our input EOS as part of our initial data using the Skyrme model,
as well as after training using the VAE generated EOS. The core-crust transition baryon number
density nB,cc is the density at which uniform nuclear matter becomes unstable to fluctuations in
density. Below nB,cc, phase separation occurs. The determinant of the Hessian matrix,

det[H] =
∂2E(nB, x)

∂n 2
B

∂2E(nB, x)

∂x 2

−
[
∂2E(nB, x)

∂nB ∂x

]2
> 0

(13)

is the stability limit of phase separation, where x is the proton fraction. The total energy per baryon
is

E(nB, x) = εN(nB, x)/nB + Ee(nB, x), (14)

where εN , the energy density of nuclear matter, is given by the Skyrme Hamiltonian density (Eq.
( 1)),

εN = HSk =
k5
Fn

10π2m∗
n

+
k5
Fp

10π2m∗
p

+ Hpot(nn, np), (15)

with nn = (1−x)nB and np = xnB, and Ee is the energy of a relativistic electron gas with ne = xnB

(charge neutrality):

Ee(ne) =
1

π2ne

∫ kFe

0

√
k2 + m2

e k
2 dk ≈ 3

5
kFe, kFe = (3π2ne)

1/3. (16)

nB,cc is obtained by solving the thermodynamic spinodal condition det[H] = 0 along the beta-

equilibrated EOS where the second term in Eq (13) vanishes, ∂E(nB ,x)
∂x

= 0. This condition marks the
onset of an instability of uniform nuclear matter toward clustering into nuclei.

To calculate nmax, or the baryon number density of the maximum stable NS mass configuration,
we first solve the TOV equations as given in Sec. 2.4 to acquire the maximum stable mass point. We
then evaluate the nmax at this point and use it as part of our boundary condition dataset. We also
take the pressure Pmax and energy density εmax at this point to fully constrain the upper boundary
on our EOS. To compute the pressure and energy density at the core-crust transition density (Pcc

and εcc, respectively), we simply evaluate the EOS at the density nB,cc.
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Figure 1: The Variational Autoencoder Framework.

2.6 The Structured Variational Autoencoder

The VAE is an artificial neutral network architecture that consists of the components shown in Fig.
1 [24] [25] [26]. The neural network architecture and activation function at each layer used in this
work is given in Tab. 2. The goal of the encoder is to learn the probability distribution of the lower-
dimension latent variable z given the input dataset X discussed in Sec. 2.2. This dimensionality
reduction enables the network to compress complex, high-dimensional EOS information into a smooth
latent manifold that captures the underlying physical correlations and variability in data. In doing
so, it regularizes the learning process, mitigates overfitting to numerical artifacts, and facilitates an
interpretable mapping between microphysical features of the EOS and macroscopic NS observables
such as Mmax and R1.4. A standard autoencoder directly outputs latent vectors from the encoder,
while the VAE has a sampling layer composed of the mean µ and the log of the variance log(σ2)
calculated from the encoder. From this sampling layer, we draw a random sample ϵ ∼ N (0, I)
from the standard normal distribution and compute latent vectors using the transformation z =
µ + exp (0.5 · log σ2) · ϵ. This formulation enables stochastic sampling from the latent Gaussian
distribution while preserving differentiability with respect to µ and σ. Consequently, gradients can
propagate through the sampling process during backpropagation, allowing the encoder to learn an
appropriate latent distribution.

Additionally, the encoder learns a distribution y of the supervised latent observables (Mmax and
R1.4) as a part of the latent layer for later use. The sampled latent vectors z are then passed into
the decoder, which increases dimensionality and computes a new probability distribution X̂ of z.
The output of the decoder is the reconstructed c2s data with boundary conditions, which is used to
compute the generated EOS, and is then passed into an algorithm that computes mass-radius (MR)
curves for a given EOS using the TOV equations from Sec. 2.4. These MR values are stored in Ŷ .

Throughout training, a total loss function is constructed to jointly optimize the reconstruction
accuracy of the EOS, the supervised agreement between the predicted and true supervised latent
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observable values, and the Kullback–Leibler divergence that regularizes the latent space toward a
standard normal prior, thereby balancing physical fidelity, predictive performance, and latent-space
smoothness. The loss function used is given by

L = Lrec + κLsup + ηLKL (17)

L = ∥X − X̂∥2 + κ ∥Y − y∥2

+
η

N · d
N∑

n=1

d∑
i=1

[
−1

2

(
1 + log σ2

n,i − µ2
n,i − σ2

n,i

)] (18)

Where Lrec is the reconstruction loss between the input and reconstructed data, Lsup is the recon-
struction loss between the input supervised latent observables and those predicted by the encoder,
LKL is the Kullback-Leibler (KL) divergence, and η, κ are weighting terms. The KL divergence is a
measure of how different our prior ∼ N (0, I) is from our probability distribution q(z |X) predicted
by the encoder. We compute it for each latent dimension i up to the total number of latent dimen-
sions d, sum the contribution of each dimension, and take the mean by dividing by the number of
samples in the batch N multiplied by the number of latent dimensions. The KL divergence acts as a
regularizing term, meaning that it can help coax the probability distribution of the variational latent
variables towards a normal gaussian profile by penalizing it for deviations [3]. Thus, a higher KL
weighting η forces the latent space distribution closer to a normal distribution. η must be selected to
be sufficiently small in order to minimize MAPE while avoiding posterior collapse, in which the latent
variables become weakly informative and the decoder ignores the latent structure. Additionally, as
η goes to zero, we recover an autoencoder framework as we lose the probabilistic sampling nature of
the VAE [27].

Table 2: Neural Network Architecture

Layer Type Neurons Activation

Input – 107 –
Layer 1 Dense 64 ReLU
Layer 2 Dense 64 ReLU
Latent layer Lambda 4 –
Layer 3 Dense 64 ReLU
Layer 4 Dense 64 ReLU
Output Dense 107 –

As outlined in Tab. 2, the ReLU activation function is used in our work. The ReLU (Rectified
Linear Unit) activation function allows positive values to pass through unmodified, while clipping
negative values to zero [28]. The output activation function choice can be better selected to ensure
causality, perhaps the sigmoid function. An activation function for the output layer did not affect
our results of this work, but could be an interesting area of further testing and exploration.

The primary machine learning system we use is the Python package Tensorflow [29]. We use a
batch size of 64 and a learning rate of α = .0001. Our input data consisting of the array discussed
in Sec. 2.2, as well as our supervised latent observables discussed in 2.4, undergo a transformation
using the StandardScaler given by Scikit-learn. This standardizes the data by removing the mean
and scaling to unit variance. For the selected dimension of the latent space, we refer to the mean ab-
solute percentage error (MAPE) heatmap shown in Fig. 2. The MAPE is computed by the equations
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(b) MAPE heatmap for the radius of a 1.4M⊙ NS (R1.4)

Figure 2: Decoder MAPE comparison for both supervised latent observables defined in Fig. 1. The
MAPE is computed for each combination of latent dimensionality, κ, and η used during training.
The hyperparameter and dimensionality combo selected for further analysis is outlined with a red
box.

shown in Fig. 1. The heatmap shows the MAPE computed between the decoder-predicted values of
our supervised latent observables and the encoder-learned supervised latent observables that are part
of the test set. This MAPE is particularly important since it measures how faithfully the decoder
preserves the mapping between the latent variables and physically observable NS properties. A low
decoder MAPE therefore indicates that the latent space encodes sufficient information to accurately
reproduce the target observables, although it does not by itself imply physical interpretability or
disentanglement of individual latent dimensions. We train a model and compute the MAPE for
each shown combination of hyperparameter η and κ, and for latent dimensions 1-4. Each tile in the
heatmap represents a different training run using the corresponding hyperparameters and dimen-
sionality. We use this heatmap to select the model that we will analyze further in Sec. 3. We choose
a combination with a low MAPE that is similar for both supervised latent observables, ensuring
that the latent space encodes both quantities with similar fidelity. For the MAPE corresponding
to the Mmax, a value of .10%, and .15% for the value corresponding to R1.4. This corresponds to
hyperparameter values of η = 0.001 and κ = 2, with a latent dimensionality of one. The selected
combination is outlined with a red box in Fig. 2. The latent dimension choice can be made by
inspecting the latent space, as we do in Sec. 3.

3 Results

After training is completed, we now have a fully generative VAE model that we can sample from
to generate EOS. The EOS can be fully controlled using a single latent parameter z0. The decoder,
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Table 3: Dataset Splits Used for Training and Evaluation

Split Size Purpose During Training

Training ∼70% Fit model parameters Yes — updates weights
Validation ∼15% Hyperparameter and epoch selection No — evaluation only
Test ∼15% Final unbiased performance No — never used during training

conditioned by the supervised latent observables Mmax and R1.4, is able to make sense of the single
latent parameter and convert z0 into meaningful EOS. Thus, we can now mimic a ten-parameter
Skyrme model using only two supervised latent observables and one latent variable, for a total of
three parameters. In this section, we will analyze the model indicated in Fig. 2 in detail.

3.1 Latent Space

Figure 3: Pairwise distributions for the supervised and latent variables for test data. The selected
central values of Mmax and R1.4, along with the intervals used to probe latent space sensitivity in the
reconstructed EOS, are indicated. For the latent variable z0, a standard normal distribution (orange)
is overlaid on the histogram.

Fig. 3 shows the latent space distribution of the test dataset, corresponding to the parameter
space that the decoder can sample from. This trained VAE model has one latent dimension and
two supervised latent observables, Mmax and R1.4, with hyperparameters η = 0.001 and κ = 2. This
configuration was selected based on the criteria discussed in Sec. 2.6. We choose the number of
latent variables zi based on the minimum dimensionality required to capture nontrivial, physically
meaningful variability in the EOS. Latent dimensions that collapse to near-linear manifolds or exhibit
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Figure 4: EOS P (nB) generated by varying the supervised latent parameter Mmax about a central
value of 2.1M⊙, while holding R1.4 and z0 fixed. For each chosen Mmax, the corresponding EOS is
decoded from the VAE latent space and evaluated over a common pressure grid. For comparison, we
also show the SLy4 EOS (dashed). The right panel shows the mass–radius curves computed from
each corresponding EOS.

strongly non-Gaussian, degenerate distributions are indicative of redundant or inactive modes and
are therefore excluded. The supervised latent observables exhibit a strong linear correlation as
expected, quantified by the Pearson coefficient r(Mmax, R1.4) = 0.8117, computed over the full test
set. The latent variable z0 in Fig. 3 follows an approximately Gaussian distribution as imposed
by the KL divergence. When projected against the supervised latent observables, we see a smooth,
nonlinear correlation, indicating that this latent dimension has learned a physically meaningful mode
of variation in the EOS.

3.2 Decoded EOS and Mass-Radius Curves

To test the generative capabilities of the trained VAE model, we vary individual latent parameters
and supervised latent observables over their posterior-supported ranges while fixing all other dimen-
sions at their mean values. Each perturbation is decoded into a full EOS, which is then propagated
through the TOV equations to produce MR relations. This procedure allows us to verify that smooth,
physically interpretable variations in latent space correspond to continuous, stable, and astrophysi-
cally consistent deformations of NS structure, thereby validating both the physical expressivity and
generative robustness of the learned model.

Fig. 4 shows the first such perturbation. We fix the latent variable z0 and the supervised
latent observable R1.4 while varying the other supervised latent observable, Mmax about the central
selected value as indicated in Fig. 3. For the EOS P (nB), the decoded equations of state remain
tightly clustered at low baryon densities, indicating that the crust and outer-core behavior is largely
unaffected by changes in the supported maximum mass. At higher densities, however, the EOS curves
begin to separate noticeably, reflecting increasing sensitivity to the assumed high-density physics.
We find that the decoded equations of state become systematically stiffer at high densities as Mmax

is increased, consistent with the physical expectation that greater pressure support at supranuclear
densities is required to stabilize more massive NSs against gravitational collapse [30]. The exact
SLy4 EOS and corresponding MR curve are plotted for reference.

In Fig. 5, we perform the same procedure as in Fig. 4, but we instead fix Mmax and z0 while
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Figure 5: Same as Fig. 4, except the supervised latent parameter Mmax and the latent variable z0
are held fixed while varying R1.4 about a central value of 12.5 km.

varying R1.4 (the supervised latent observable corresponding to the radius of a 1.4 M⊙ NS). The
EOS remain coherent at higher densities corresponding to the core of a NS, but noticeably diverge
at the low-density region highlighted in the upper-left panel. This behavior is consistent with the
well-known sensitivity of NS radii to the pressure near and just above nuclear saturation density,
where variations in the EOS primarily influence the stellar envelope rather than the core [31].

We do the same procedure as above in Fig. 6, but instead varying the latent variable z0 while
fixing Mmax and R1.4 and decoding the corresponding EOS. This variation produces EOS that are
very similar, with variations at baryon density nB ≲ 0.1 fm−3. Differences in the low-density EOS
directly translate into variations in neutron-star radii, particularly for lower-mass stars, indicating
that z0 primarily encodes information relevant to the intermediate-to-low density structure of NS.

An interesting feature to note is the EOS crossing point that occurs at low densities around
nuclear saturation density in Fig. 4 (more apparent in log-scaled space), and the corresponding MR
curve crossing that occurs around a mass of 1.4 M⊙ and a radius of 12.5 km. These features are
likely correlated and reflect the sensitivity of R1.4 to the EOS at near saturation density discussed
above. This crossing is clear to see in the EOS curves as shown in Fig. 5.

3.3 SLy4 EOS Comparison

We now aim to show that the VAE framework is capable of accurately reproducing the SLy4 EOS
by directly selecting and passing to the decoder the supervised latent observables Mmax = 2.046 M⊙
and R1.4 = 11.717 km, values calculated with the SLy4 parameterization. Fig. 7 shows the EOS
and corresponding MR curves for SLy4, and the VAE-generated EOS made by explicitly passing in
the above values of M⊙ and R1.4 as conditioning points to the decoder. For the value of the latent
parameter z0, we use the scaled latent mean value of z0 = .0487. We also use the computed value of
the decoder MAPE for R1.4 of 0.15% (as given in Fig. 2) to construct a symmetric fractional tolerance
band about the VAE-generated MR curve. This acts as a visual indicator of the high accuracy the
VAE achieves when attempting to decode the SLy4 EOS. In particular, the VAE decodes a value
of Mmax = 2.043 ± 0.002 M⊙ and R1.4 = 11.715 ± .0176 km, in very close agreement to the exact
SLy4-calculated values of 2.046 M⊙ and 11.717 km. We scale up the tolerance band in 7 by a factor
of 10 for visibility.
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Figure 6: EOS P (nB) generated by fixing the supervised latent parameters Mmax and R1.4 and varying
the latent parameter z0. The left plot is log scaled to highlight the low-density EOS variation, and
the SLy4 curve’s appearance has been modified to make the variation visible.

4 Conclusion

In this work, we create a VAE framework to generate new candidate NS EOS. We show that our model
is capable of taking theoretical 10 parameter Skyrme EOS as input EOS data, compressing it down
to a single latent dimension z0 and two supervised latent observables Mmax and R1.4. We can then
use this reduced dimension latent space to control the generation of physically consistent NS EOS.
By varying the latent space values, we demonstrated that our decoded EOS remain smooth, causal,
and thermodynamically stable across the full density range of interest, while exhibiting controlled
and physically interpretable variations in both macroscopic NS observables and high-density EOS
behavior. In particular, systematic changes in the supervised and variational latent parameters
produce coherent shifts in the stiffness of the EOS at different density ranges and the corresponding
mass–radius relations at different mass ranges. Together, these results demonstrate that the latent
representation learned by the VAE provides a compact and physically meaningful parameterization of
the NS EOS, enabling efficient exploration of EOS sensitivity within observationally and theoretically
admissible bounds.

5 Future Work

Future work should include a comparison of the speed increases of this VAE approach as compared to
traditional methods of creating new EOS, to cement it’s robustness as an alternative, if not improved,
method for NS EOS studies. One of the primary advantages of using a decoder network to perform
Markov chain Monte Carlo sampling of latent space parameters for Bayesian analysis involving NS
observations is the decoder can generate large numbers of candidate EOS realizations essentially
“on demand”. This potentially enables faster exploration of EOS uncertainty while maintaining
physically motivated constraints embedded in the training data and EOS construction procedure,
which needs to be explored in future works.

This framework supports the integration of other theoretical nuclear models into the input data
used to train the model. Naturally, adding EOS and boundary conditions derived from models other
than Skyrme, such as the Relativistic Mean-Field model, would potentially allow a more thorough
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Figure 7: Equation of state P (nB) and MR curves generated by fixing the values of Mmax and R1.4

to the SLy4 values of 2.046 M⊙ and 11.717 km, respectively and decoding the EOS. Shaded regions
denote the fractional tolerance band obtained by scaling the decoded EOS by the decoder MAPE of
R1.4. The exact SLy4 model EOS and MR curve is shown for reference.

exploration of the theoretical EOS parameter space. In addition, scenarios involving first-order
phase transitions, in contrast to the relatively smooth EOS functions considered here, should be
explored. Such transitions under Maxwell construction between various quark models such as MIT
bag model and hadronic model EOS, naturally allow the sound speed to approach zero and introduce
discontinuities in the EOS [32] [33]. These more sophisticated possibilities may be particularly well-
suited for application of the VAE framework proposed in this work.
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[32] Luiz L Lopes, Carline Biesdorf, and Débora P Menezes. “Modified MIT bag Models—part
I: Thermodynamic consistency, stability windows and symmetry group”. In: Physica Scripta
96.6 (Mar. 2021), p. 065303. issn: 1402-4896. doi: 10.1088/1402-4896/abef34. url: http:
//dx.doi.org/10.1088/1402-4896/abef34.

16

https://doi.org/10.1103/PhysRevC.83.065809
https://doi.org/10.1103/PhysRevC.83.065809
https://arxiv.org/abs/1105.5222
https://doi.org/10.1140/epja/s10050-025-01507-7
https://arxiv.org/abs/2501.18676
https://arxiv.org/abs/2501.18676
https://doi.org/10.1103/PhysRev.55.364
https://link.aps.org/doi/10.1103/PhysRev.55.364
https://link.aps.org/doi/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.374
https://link.aps.org/doi/10.1103/PhysRev.55.374
https://link.aps.org/doi/10.1103/PhysRev.55.374
https://doi.org/10.1137/0904010
https://doi.org/10.48550/arXiv.1906.02691
https://doi.org/10.48550/arXiv.1906.02691
https://arxiv.org/abs/1906.02691
https://doi.org/10.48550/arXiv.1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://doi.org/10.1103/PhysRevD.111.023035
https://arxiv.org/abs/2403.14266
https://doi.org/10.48550/arXiv.1906.02691
https://doi.org/10.48550/arXiv.1906.02691
https://arxiv.org/abs/1906.02691
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://doi.org/10.48550/arXiv.1605.08695
https://arxiv.org/abs/1605.08695
https://doi.org/10.1086/319702
https://arxiv.org/abs/astro-ph/0002232
https://doi.org/10.1088/0004-637X/773/1/11
https://arxiv.org/abs/1303.4662
https://doi.org/10.1088/1402-4896/abef34
http://dx.doi.org/10.1088/1402-4896/abef34
http://dx.doi.org/10.1088/1402-4896/abef34


[33] Sebastian Blacker, Andreas Bauswein, and Stefan Typel. “Exploring thermal effects of the
hadron-quark matter transition in neutron star mergers”. In: Physical Review D 108.6 (Sept.
2023). issn: 2470-0029. doi: 10.1103/physrevd.108.063032. url: http://dx.doi.org/10.
1103/PhysRevD.108.063032.

17

https://doi.org/10.1103/physrevd.108.063032
http://dx.doi.org/10.1103/PhysRevD.108.063032
http://dx.doi.org/10.1103/PhysRevD.108.063032

	Introduction
	Methods
	Energy Density Functional
	Training Data
	Reconstructing EOS from Data
	The TOV Equations
	Boundary Condition Computation
	The Structured Variational Autoencoder

	Results
	Latent Space
	Decoded EOS and Mass-Radius Curves
	SLy4 EOS Comparison

	Conclusion
	Future Work

