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Abstract

In this thesis, conducted in the field of few–body nuclear physics, I studied low energy

inelastic reactions of electro–weak probes on light nuclei.

Such interactions hold experimental and theoretical attention in recent years be-

cause of the role they play in various fields of physics, stretching from checking the

standard model limits; through nuclear structure and dynamics research; up to mi-

croscopic interaction in astrophysical phenomena, such as supernova explosion and

the nucleosynthesis of the elements.

The reactions considered in this work are:

(i) Neutrino interaction with A = 3 and 4He nuclei, in energies typical to core-

collapse supernova. For 4He both the neutral and charged current reactions

were calculated, whereas only neutral current reactions are calculated for A = 3

nuclei.

(ii) Photoabsorption on 4He. This long standing problem has been the attraction

of theoretical and experimental efforts in the last three decades.

A complete theoretical description of these reactions holds many obstacles. The most

significant one arises from the fact that light nuclei are weakly bound and as such

they have few, if any, excited states. Thus, evaluation of the nuclear dynamics usually

includes a transition between the nucleus ground state and a resonance in the contin-

uum, namely fragments of the initial nucleus interacting with each other in what is

commonly known as final state interaction (FSI). As a result, a theoretical study of

the reaction should contain both the ground state and the final state interaction. In

order to avoid a calculation of a continuum final state, which is currently out of reach
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already for A = 4, I used an integral transform with a lorentzian kernel. This novel

method, the Lorentz integral transform (LIT) method allows a reduction of the full

scattering problem into a Schrödinger like equation with boundary conditions of a

bound state. This equation is solved using the recently developed method of effective

interaction hyperspherical harmonics (EIHH). The combination of these two methods

has been applied in the literature for electro–magnetic and strong reactions. In my

thesis, the approach was applied for the first time for weak reactions, and results in

a percentage level numerical accuracy.

Photon reactions on nuclear targets are a common experimental method for inves-

tigating the nuclear structure and dynamics. In electromagnetic processes, the nuclear

forces manifest themselves also as exchange currents, due to gauge invariance. How-

ever, one does not have to explicitly calculate their contribution. The conservation of

the electromagnetic current allows an application of the Siegert theorem, which in low

energy suggests that these currents are included in the single nucleon charge opera-

tor. Thus, the scattering operators are model independent. This makes photonuclear

processes ideal for experimental study of the nuclear force and structure.

A fundamental example of electromagnetic response which drew continuous in-

terest in the last three decades, both in theory and in experiment, is the 4He pho-

todisintegration process. The α-particle is drawing such a great attention because it

has some typical features of heavier systems (e.g. binding energy per nucleon), which

make it an important link between the classical few-body systems, viz deuteron, triton

and 3He, and more complex nuclei. For example in 4He one can study the possible

emergence of collective phenomena typical of complex nuclei like the giant dipole

resonance. Furthermore, 4He is the ideal testing ground for microscopic two- and

three-body forces, which are fitted in the two- and three-body systems. One expects

that the 3NF is of considerably greater relevance in the four-body system, as the

number of triplets is bigger, and due to its higher density.

The microscopic calculation of the 4He photoabsorption process presented here is

the first evaluation of the cross–section which includes realistic NN potential, Argonne

v18, and 3NF, Urbana IX, and full final state interaction, taken into account via the
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LIT method. The resulting cross–section is characterized by a pronounced peak, due

to a dipole excitation. We have found that the 3NF only slightly lowers the peak (by

about 6%). This effect is much smaller than the 20% effect on the binding energy,

and than the influence expected when compared to the 3H/3He(γ) processes. The

effect of the 3NF grows at higher energy transfer to about 35%.

The comparison to experiments is unclear, mainly due to the poor status of the

experimental data, in which the differences reach a factor of 2. However, close to

threshold the theoretical cross section agrees quite well with all experiments. In

the giant resonance region of the cross–section, where there are several experimental

evaluations of the cross–sections which in some cases do not agree, the theoretical

results are in good agreement with the majority of the available data.

The photoabsorption process can be used to infer properties of the ground state.

In fact, moments of the total photoabsorption cross–section lead to known sum–rules,

which are indicative for different characteristics of the ground state, such as the charge

radius and the nucleon-nucleon distance. In particular, the configuration tetrahedral

symmetry of 4He is tested, and this symmetry is found to be slightly broken. This

observation, which can be tested in experiments, suggests that the mean distance

between identical nucleons is slightly (6%) larger than the mean distance between

proton and neutron.

The second branch of the work investigates inelastic neutrino scattering on A = 3

and 4He nuclei in core–collapse supernova scenario. Inelastic neutrino interaction

with nuclei can potentially influence several properties of the physics in the super-

nova. Firstly, they may change the structure of the neutrino signals. Secondly, they

can deposit energy in the matter behind the stalled shock, thus might change its tem-

perature and even revive the shock. Finally, they change the chemical composition of

the star by breaking nuclei to fragments. The high abundance of 4He nuclei both in

the shocked area and in the outer layers of the star, may result in an effect on these

processes.

Lately, we have discovered that a substantial amount of trinuclei can exist in the

neutrinosphere of the newly born proto–neutron star. This is a result of the previously
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neglected interaction between nuclei in that area. Thus, neutrino interaction with

these nuclei may affect the neutrino spectra.

These facts motivate evaluation of the cross–sections. In this work, the first ab-

initio calculation of the inelastic reactions is given, with realistic forces: AV18 NN

potential and UIX 3NF. By using the LIT method, all break–up channels are consid-

ered. The vector meson exchange currents are implicitly calculated using the Siegert

theorem. The contribution of the (non–conserved) axial meson exchange currents

to the cross sections has to be calculated explicitly. I cope with this by using ef-

fective field theory of QCD at low energy, with the nucleons and pions as explicit

degrees of freedom. The axial currents are calibrated to reproduce the triton half–

life, within this nuclear Hamiltonian, thus enabling parameter–free prediction of the

cross–sections. This calculation procedure, known in the literature as EFT*, has been

tested successfully in the calculation of numerous weak reactions, e.g. Park et. al

calculated pp-fusion and hep process. The current work is the first application of the

method for the calculation of complete inelastic processes, not only on–threshold.

The contribution of the exchange currents to the ν−α scattering process is negli-

gible, due to the “closed shell” character of this nucleus. However, the effect of meson

exchange currents in the case of neutrino scattering on mass-three nuclei is about 20%

of the cross–section for low neutrino temperature. As neutrino temperature increases,

the effect reduces to less than 2% for neutrino temperatures above 5 MeV.

The error estimation, for both α and the trinuclei, due to the effective theory

cutoff dependence of the cross–section is less than a percent, for neutrino temperatures

higher than 2 MeV. This is a strong validation of the calculation.

The neutrino scattering cross–section is found to be rather sensitive to the prop-

erties of the force model. Thus, the predicted neutrino scattering cross–sections are

considered to be of 5% accuracy.

The reactions calculated in this thesis make an important step towards more

precise predictions made by nuclear physics. These predictions have the ability to

check the properties of the nuclear forces on the one hand, and on the other hand

to be used as accurate and reliable microscopic input for simulations of astrophysical

phenomena.
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1Introduction

The physics of the atomic nucleus has drawn a large amount of attention since the

dawn of quantum mechanics, fascinating physicists in its diversity and complexity.

Understanding the nuclear world has led to many practical uses, the examples stretch

from medical application, where radioactive and nuclear magnetic resonance map-

pings are already standard procedures; through nuclear reactors, in which one makes

use of the energy released in stimulated nuclear decays as a power source; and finally

to the destructive power of nuclear weapons.

The nucleus is a complex entity, built of nucleons held together by the strong

force. A nucleon is a common name for both neutrons and protons, emphasizing the

approximated symmetry of their response to the strong force, and their similar mass.

Determining the properties of the strong force was, and still remains, a scientific

challenge. It is accepted today that the strong force is the low energy appearance

of quantum chromodynamics (QCD). However, deriving the nuclear force from the

fundamental theory is an open question, due to the non–perturbative character of

QCD in low energy.

The modern nuclear physics has two main approaches to meet this problem, a

semi–phenomenological approach and an effective field theory (EFT) approach. In

the semi–phenomenological approach the potential includes all functional shapes and

operators allowed by Poincarè and isospin symmetry of QCD. The parameters for this

potential are calibrated by experimental scattering phase shifts. A clear disadvantage

is that the fit of the parameters is not unique as the theory lacks a clear connection

to the underlying theory, a fact which leads to a questionable predictive measure.

However, the approach has many successes. One of its important consequences is

identifying the need of adding attractive three nucleon forces (3NF) to fit the spectra

of A ≥ 3 nuclei. The realistic semi–phenomenological potentials combined with 3NFs

1



Chapter 1. Introduction 2

successfully reproduce the low lying spectra of A < 12 nuclei.

The EFT approach uses the chiral symmetry of QCD to describe the force among nu-

cleons. The approach leads to a consistent perturbative expansion of the interaction,

with numerical coefficients which contain information about higher energy degrees

of freedom. These coefficients can be in principal calculated from QCD, but due to

the aforementioned difficulties are usually calibrated using low energy experiments.

Among obvious advantages, in this approach the 3NF are predicted and appear at

higher order of perturbation theory, thus less important - as also found phenomeno-

logically. However, in order to reach the accuracy achieved in describing the entirety

of problems as the semi–phenomenological approach one has to expand the poten-

tials up to next–to–next–to–next–to leading order (N3LO). Such potentials are still

not completely available (see however (Epelbaum et al., 2000; Entem and Machleidt,

2003)).

It is of great interest to check the success of both approaches in predicting dy-

namical observables of nuclei. This is not a simple task. The problem arises from the

need to solve the Schrödinger equation in 3A− 3 dimensions, with substantial inter-

particle correlations. Without any further approximations, this is an example of the

few–body quantum problem, which explores the response of A bodies to the forces be-

tween them. Even today, this problem lacks a general mathematical solution, mainly

in cases of scattering to continuum states. For bound state problems, the last decade

has brought immense progress, due to theoretical advances and increasing available

computer power. A variety of methods solving the nuclear problem microscopically

(for bound states) have evolved, among which are the No Core Shell Model (Navrátil

and Barrett, 1996), Green Function Monte Carlo (Wiringa et al., 2000), Stochastic

Variational Method (Suzuki and Varga, 1998) and the Effective Interaction Hyper-

spherical Harmonics approaches, which have been used for calculations of nuclei in

the medium range (A > 4).

Contrary to this, calculations of reactions have not met this success. Specifically,

light nuclei are weakly bound and as such they have few, if any, bound excited states.

Thus, experiments designed to study nuclear dynamics include a transition between

the nucleus ground state and the continuum. The latter are essentially fragments
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interacting with each other in final state interaction (FSI). It is clear that a complete

theoretical evaluation of the reaction should include an accurate description of both

the ground state and the final state interaction. An exact calculation of a final state

in the continuum for all break–up channels is out of reach already for A = 4. In order

to avoid a calculation of a continuum final state one can use an integral transform

with a lorentzian kernel. This novel method, the Lorentz integral transform (LIT)

method (Efros et al., 1994) reduces the full scattering problem to a Schrödinger like

equation with bound state boundary conditions. This equation can be solved using

the above mentioned few-body methods, and in this thesis the modern method of

effective interaction hyperspherical harmonics (EIHH) method (Barnea et al., 2000,

2001b; Barnea and Novoselsky, 1997) is used for solving the LIT equations.

The combination of the LIT and EIHH methods allows nuclear theory to describe

reactions of complex nuclei with A ≥ 3 which were previously unreachable in ab initio

calculations. The methods have proven successful for the calculation of the total pho-

toabsorption cross–section (Orlandini, 2004) and inclusive electron–scattering process

of A = 3 nuclei (Efros et al., 2004), with realistic nucleon–nucleon potential and 3NF.

Calculations of photoabsorption and electron scattering processes using semi–realistic

forces were done for A = 4− 7 body systems, giving quite realistic results in compar-

ison with experiments (Bacca et al., 2004, 2002; Efros et al., 1997b,c).

The focus of this thesis is the accurate modeling and calculation, feasible by using

the LIT and EIHH methods, of electro–weak interaction with light nuclei, specifi-

cally neutrino scattering and photoabsorption on nuclei. Electro–weak reactions are

of central importance not only due to their use in experiments which probe nuclear

structure and force properties. Their importance stems also from the role they play in

cosmic and stellar events. This research field, “nuclear astrophysics”, evolved in the

last century from the understanding that in many astrophysical phenomena the typ-

ical thermodynamic conditions are so extreme that nuclear reactions can be induced

thermally. By this observation, nuclear physics has turned to be the microscopic

ingredient used to address astrophysical mysteries. For example, energy released in

nuclear fusion has been discovered to be the fuel of stars, thus nuclear theory sets the

main properties of a star, i.e. its composition, evolution and way of death. Another
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key question addressed in nuclear astrophysics is the origin of the variety of elements

in nature. Big–bang nucleosynthesis, i.e. the synthesis of light elements in the early

stages of the universe, provides a hatch to physics in the first three minutes of the

universe. The rest of the elements are believed to be produced during the evolution of

a star and mainly in the extreme conditions of its death, in a supernova. In this work,

neutrino reactions with A = 3 and 4He are calculated. These reactions are of interest

in the description of the exploding death of a massive star, and in the nucleosynthesis

within, as will be explained.

In the next two sections we will elaborate on the specific processes addressed in

this thesis.

1.1 Photodisintegration of 4He

Photonuclear reactions are a common experimental method for investigating the nu-

clear structure and dynamics. In these processes, a real photon excites a nucleus.

The perturbative character of the electromagnetic interaction, dictated by the fine

structure constant e2

~c
≪ 1, makes it possible to seperate the scattering process and

the nuclear properties affecting the process. The photon, as a result, is ideal for

experimental study of nuclei.

A fundamental example of an electromagnetic response which drew a continuous

interest in the last three decades, both in theory and in experiment (see (Nilsson

et al., 2005; Shima et al., 2005) and references therein), is the 4He photodisintegration

process. The α-particle is drawing such a great attention because it has some typical

features of heavier systems (e.g. binding energy per nucleon), which make it an

important link between the classical few-body systems, viz deuteron, triton and 3He,

and more complex heavy nuclei. For example, in 4He one can study the possible

emergence of collective phenomena typical of complex nuclei. Such a phenomenon

is the giant dipole resonance, an enhanced cross section in the range 10 − 30 MeV

found in heavy nuclei, due to an E1 dipole excitation. Furthermore, 4He is the ideal

testing ground for microscopic two- and three-body forces, which are fitted in the

two- and three-body systems. At present the 3NF is not yet well determined, thus
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it is essential to search for observables where it plays an important role. Because of

gauge invariance, in electromagnetic processes nuclear forces manifest themselves also

as exchange currents, which have turned out to be very important in photonuclear

reactions and hence 3NF effects might become significant. For the three-nucleon

systems photonuclear processes have already been studied (Efros et al., 2000; Golak

et al., 2002, 2005), e.g. in Efros et al. (2000) it was found that the 3NF leads to

an almost 10% reduction of the electric dipole peak and up to 15% enhancement at

higher energy. One expects that the 3NF is of considerably greater relevance in the

four-body system, since it involves six nucleon pairs and four triplets, compared to

three pairs and just one triplet in the three-nucleon systems. In addition, the higher

density of 4He might enhance the importance of the 3NF.

The 4He(γ) reaction represents a very challenging theoretical problem due to the

fact that the nucleus has no bound excited states, so the full four-body continuum

dynamics and all possible fragmentation have to be considered. It is of no surprise

that the current theoretical situation of the 4He photodisintegration is not sufficiently

settled. Calculations with realistic nuclear forces have not yet been carried out, and

exist only for semi-realistic nucleon-nucleon (NN) potentials. In Refs. (Efros et al.,

1997b; Barnea et al., 2001a; Quaglioni et al., 2004) it has been shown that such models

lead to pronounced peak cross sections, in rather good agreement with the data of

Nilsson et al. (2005) and much different from what was calculated earlier (Ellerkmann

et al., 1996).

A similar status holds for the experimental research of the process, as most of the

experimental work has concentrated on the two-body break-up channels 4He(γ, n)3He

and 4He(γ, p)3H in the giant resonance region, but a large disagreement still exists in

the peak. In fact in two very recent (γ, n) experiments (Nilsson et al., 2005; Shima

et al., 2005) one finds differences of a factor of two.

It is evident that the experimental and theoretical situations are very unsatisfac-

tory. In this thesis I present an important step forward on the theory side performing

a calculation of the total photoabsorption cross section σγ of 4He with a realistic

nuclear force, namely Argonne V18 (AV18) NN potential (Wiringa et al., 1995) and

the Urbana IX (UIX) 3NF (Pudliner et al., 1997).
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1.2 Neutrino Scattering on Light Nuclei in Super-

nova

Core-collapse supernovae (SN) are giant explosions of massive stars, above 9 solar

masses, that radiate 99% of their energy in neutrinos. The current theory of core

collapse supernova holds some open questions regarding the two important phenom-

ena related to the event, i.e. the explosion mechanism and the synthesis of complex

nuclei.

The extreme conditions within the supernova make nuclear reactions important

microscopic phenomena which govern the equation of state. Therefore, the dynam-

ics and neutrino signals can be sensitive to the details of neutrino interactions with

nucleonic matter. In order to analyze the mentioned questions, a better understand-

ing of the involved microscopic processes is needed. In particular, due to the high

abundance of α particles in the supernova environment, the inelastic neutrino–4He

reaction has drawn attention in recent years. This interest yielded a number of stud-

ies trying to estimate the cross-section and the role of neutrino–4He reactions in the

described phenomena (Haxton, 1988; Epstein et al., 1988; Meyer, 1995; Yoshida et al.,

2005, 2006; Ohnishi et al., 2006; Suzuki et al., 2006; Woosley et al., 1990). However

to date, a full ab–initio calculation that includes a realistic nuclear Hamiltonian is

still missing. Moreover, the contribution of meson exchange currents (MEC) to this

particular scattering process was never estimated.

Core collapse supernovae are believed to be neutrino driven explosions of massive

stars. As the iron core of the star becomes gravitationally unstable it collapses until

the nuclear forces halt the collapse and drive an outgoing shock. This shock gradually

stalls due to energy loss through neutrino radiation and dissociation of the iron nuclei

into a mixture of α particles and free nucleons.

At this stage, the proto-neutron star (PNS) cools mainly by emitting neutrinos in

enormous numbers. These neutrinos are a result of thermal pair production, and thus

are produced in flavor equilibrium. The characteristic temperatures of the emitted

neutrinos are about 6− 10 MeV for νµ,τ (ν̄µ,τ ), 5− 8 MeV for ν̄e, and 3− 5 MeV for

νe. The difference in temperature originates from the large cross-sections for νe, ν̄e
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electron scattering and charge current reactions, thus νµ,τ (ν̄µ,τ ) decouple deeper

within the star, where the temperature is higher. Interactions of neutrino with nuclei

in this location, called neutrinosphere, can change neutrino temperature and spectra.

Clearly, it is essential to estimate the abundances of nuclei in that region.

Abundances of nuclei are usually predicted using nuclear statistical equilibrium

(NSE) models based on binding energies and the quantum numbers of nuclei. How-

ever, NSE models only treat approximately (or neglect) strong interactions between

nuclei, and consequently break down near the neutrinosphere. In a recent work

(O’Connor et al., 2007), we have shown this results in a substantial amount of A = 3

nuclei near the newly born proto-neutron star (PNS), an effect forehand unnoticed.

The hot dilute gas above the PNS and below the accretion shock contains up to

70% 4He nuclei. The high temperature of heavy flavored neutrinos migrating out of

the PNS leads to a considerable amount of µ and τ neutrinos (and anti-neutrinos)

which carry more than 20 MeV, hence may dissociate the 4He nucleus through inelastic

neutral current reactions. If these reactions deposit enough energy in the matter

behind the shock, they can eventually reverse the flow and revive the shock. This

delayed shock mechanism, originally introduced by Colgate and White (1966), has not

yet been proven in full hydro-reactive simulations. Haxton (1988) has suggested that

inelastic neutral reactions of neutrinos with 4He can lead to an enhanced neutrino

energy deposition. This effect is usually ignored (see however (Ohnishi et al., 2006;

Woosley et al., 1990)) and was not considered in full hydrodynamic simulations.

The energy deposition also creates the needed conditions for the r–process, nucle-

osynthesis by rapid capture of free neutrons, believed to occur in the material ejected

from the PNS. The break-up of 4He by neutrinos is part of the chain of reactions

which determines the amount of free neutrons (Fuller and Meyer, 1995) needed for a

successful r–process.

A different nucleosynthesis process which is influenced by ν − α interaction is

ν–nucleosynthesis in the outer layers of the star. A knock out of a nucleon from a
4He nucleus in the helium rich layer, creates the seed to light element nucleosynthesis

in the supernova environment (Woosley et al., 1990). Followed by a fusion of the

remaining trinucleus with another α particle, this will result in a 7–body nucleus.
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This process is an important source of 7Li, and of 11B and 19F through additional

α capture reactions. Due to the high dissociation energy of the α, this mechanism

is sensitive to the high–energy tail of the neutrinos. Thus a correct description of

the process must contain an exact, energy dependent cross-section for the neutral

inelastic α − ν reaction, which initiates the process. The relatively low temperature

of the νe’s and ν̄e’s emitted from the core of the star suppress the probability for

inelastic reactions of these neutrinos with 4He in the supernova scenario. Oscillations

of the µ and τ (anti) neutrinos can yield a secondary source of energetic electron

neutrinos. The resulting charge current reactions, which have larger cross-sections

than the neutral cross-sections, would affect the discussed yields (Yoshida et al.,

2006).

The work in this thesis predicts, to a percentage level accuracy, the cross–sections

for neutrino interactions with A = 3 and 4He nuclei. This removes the uncertainty,

which exists today, in the microscopic information needed for a correct evaluation of

the aforementioned processes.

1.3 About this thesis

The work presented in this thesis summarizes the results published in a series of

papers written during my PhD. studies.

Two of these papers investigated the photoabsorption process on 4He:

P1 “Photoabsorption on 4He with a Realistic Nuclear Force”, D. Gazit, S. Bacca, N.

Barnea, W. Leidemann, G. Orlandini, Phys. Rev. Lett. 96, 112301 (2006).

P2 “Photonuclear sum rules and the tetrahedral configuration of 4He”, D. Gazit, N.

Barnea, S. Bacca, W. Leidemann, G. Orlandini, Phys. Rev. C 74, 061001(R)

(2006).

A substantial mass of the work was done on the subject of low–energy neutrino

scattering on light nuclei, namely triton, 3He and 4He, published in:

P3 “Neutrino neutral reaction on 4He: Effects of final state interaction and realistic

NN force”, D. Gazit and N. Barnea, Phys. Rev. C 70, 048801 (2004).
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P4 “Low-Energy Inelastic Neutrino Reactions on 4He”, D. Gazit and N. Barnea,

Phys. Rev. Lett. 98, 192501 (2007).

P5 “Neutrino breakup of A = 3 nuclei in supernovae”, E. O’Connor, D. Gazit, C. J.

Horowitz, A. Schwenk, N. Barnea, Phys. Rev. C 75, 055803 (2007).

P6 “Few body Calculation of Neutrino Neutral Inelastic scattering on 4He”, D. Gazit

and N. Barnea, Nucl. Phys. A 790, 356 (2007) .

P7 “Low energy inelastic neutrino reactions on light nuclei”, D. Gazit and N. Barnea,

in prep.

The structure of the thesis is as follows. The first part, chapters 2-5, contains

a detailed description of the underlying physics and the methods of calculations.

Chap. 2 explains the quantum formalism of electro–weak probes scattering on nuclei.

The next chapter uses EFT approach to derive the scattering operator. The LIT

method is discussed in Chap. 4, followed by a description in Chap. 5 of the nuclear

wave functions used to solve the LIT equations.

The second part of the thesis presents the calculated cross–sections and their

physical application. In Chap. 6 the photoabsorption on 4He process is analyzed,

based on the work published in P1 and P2. Chap. 7 a complete calculation is given

for neutrino inclusive scattering on A = 3 and 4He nuclei, as was first presented in

P3-P7.

The thesis concludes with a summary.



2Scattering of electro-weak

probes on Nuclei

The unification of the electro-magnetic and weak forces is considered one of the biggest

accomplishments of physics in the twentieth century. In the forty years since the

pioneering work by Weinberg, Salam and Glashow, the standard model has been a

matter of constant interest and ongoing research.

The application of this theory to the description of photon and neutrino scattering

off matter is a key ingredient in experiments checking the limits of the standard model

or exploring the structure of baryonic matter. These reactions are also the microscopic

engines of many stellar phenomena, from star evolution to supernova explosion.

The weakness of the electro-weak interaction, in comparison to the strong force,

makes a perturbative treatment of scattering processes on nuclei a good approxima-

tion. Consequently the interaction between electro-weak probes and nuclei targets

reduces to a current-current type, as shown in the first section of this chapter.

An important result, presented in this chapter, is that the observables directly re-

late to the nuclear matrix element. Not only does this simplify calculations, but also

provides an experimental separation of the electro-weak effects and the strong force

effects. One cannot overemphasize the importance of the latter fact in the experimen-

tal research of the strong force, as reflected in the nuclear structure and dynamics.

From the point of view of a theoretician, a construction of the electromagnetic and

weak currents within the nucleus is needed. Chap. 3 is dedicated to meeting this

challenge.

An additional simplification is achieved by using a multipole decomposition of

the nuclear currents. This breaks the current into a series of operators, each charac-

terized by known parity and angular momentum Jπ. For low energy probes, whose

wavelength q−1 is much larger than the typical size of a nucleus R, the multipole

decomposition provides a polynomial dependence in the small parameter qR. In the

10
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following discussion, the multipole decomposition technique is rigourously reviewed

for the electro–weak interaction.

2.1 Neutrino Scattering

Neutrino scattering processes on elementary particles can be easily calculated using

the Feynman diagrams of the standard model. Nuclei, however, are not elementary

particles. On the contrary, they are built of protons and neutrons, that are built of

quarks.

A possible way to cope with this problem, which is common in the literature, is

to treat the nucleons as point fermions, with form factors indicating their complex

quark structure.

The weak coupling constant G = 1.166×10−11 MeV−2 provides a small parameter,

so the relevant neutrino scattering processes include one boson exchange. The first

order Feynman diagrams for neutrino scattering off nucleon appear in Walecka (1995).

The neutrino scattering processes of interest appear in Fig. 2.1. A neutrino with

momentum kµ
i interacts with a nucleus of initial momentum P µ

i , through the exchange

of heavy boson with momentum qµ = (ω, ~q). The result of the interaction is the

emergence of a lepton with momentum kµ
f , and nuclear fragments with momentum

P µ
f . Energy momentum conservation implies: qµ = kµ

i − kµ
f = P µ

f − P µ
i .

The lepton could be either neutrino of the same flavor in the case of neutral

current reaction, or an electron, muon or tau, for charged current reactions. In the

low energy regime typical to supernova environment, the possible charged reaction is

the creation of an electron or a positron.

Thus, for all neutrino scattering processes, one can write the general form of the

transition matrix for both charged and neutral currents (with one boson exchange):

Tfi = (neutrino current)µ ·
gµν + qµqν

M2
B

q2 +M2
B

· (nuclear current)ν . (2.1)

For low energy reactions with respect to the boson masses – MZ0 ≈ 92 GeV and
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Figure 2.1: Neutrino scattering processes and their kinematics: (a) charged current
e+ production; (b) charged current e− production; (c) neutral current process

MW± ≈ 80 GeV – the momentum dependent terms are negligible. The boson prop-

agator is constant in this limit ∼ gµν/M
2
B, and acts as an effective coupling con-

stant (which explains the weak scale of weak interaction). This effective vertex,

demonstrated in Fig. 2.2, leads to the famous current–current Hamiltonian density:

HW ∼ jµJµ (jµ is the lepton current, and Jµ is the nuclear current). The standard

Figure 2.2: Effective vertex for low energy weak interactions.

model gives additional information regarding the formal structure of the currents. It

is shown in Appendix A, that the weak neutral current takes the form,

J (0)
µ = (1− 2 · sin2 θW )

τ0
2
JV

µ +
τ0
2
JA

µ − 2 · sin2 θW
1

2
JV

µ (2.2)

=
τ0
2

(
JV

µ + JA
µ

)
− 2 · sin2 θWJ

em
µ
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Where JV
µ and JA

µ have vector and axial symmetry, respectively. The second equality

takes advantage of the conserved vector current hypothesis, by which the weak–vector

current is an isospin rotation of the electro–magnetic current (Jem
µ = 1+τ0

2
JV

µ ).

A similar calculation for the charged current yields:

J (±)
µ =

τ±
2

(
JV

µ + JA
µ

)
(2.3)

The vector and axial currents include not only a sum over all nucleons. It is well

known, and will be shown in the next chapter, that in order to keep consistent with

the chiral symmetry one has to include not only one nucleon currents but also meson

exchange currents, which hold the nucleons bound in the nucleus.

2.1.1 Cross section calculation for neutrino scattering pro-

cesses

In order to evaluate the probability for a scattering, the starting point is the Golden

Rule (by Fermi). Taking into account the recoil of the nucleus, the differential cross-

section takes the form,

dσ = 2π

∫
dǫδ(ǫ− ω +

q2

2MA
)
d3~kf

(2π)3

∫∑

f

|〈f |ĤW |i〉|2δ(Ef − Ei − ǫ) (2.4)

Here MA is the initial nucleus mass, |i
〉

(|f
〉
) is the initial state of the system, and Ei

(Ef) is the initial (final) energy of the nuclear system. In the previous chapter it was

shown that, in the limit of low energy-momentum transfer with respect to the heavy

gauge bosons W± and Z0 mass, a proper approximation for the weak interaction

between leptons and baryons is,

ĤW =
G√
2

∫
d3~xĵµ(~x)Ĵ µ(~x). (2.5)

The calculation of the matrix element of the Hamiltonian needed in Eq. (2.4) is divided

accordingly. Keeping the theory to first order in the weak interaction constant, the
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lepton current ĵµ(~x) is composed only of one lepton, which is a point Dirac particle.

Thus, its matrix element is 〈f |jµ(x)|i〉 = lµe
−i~q·~x, where for neutrino reaction lµ =

ū(k1)γµ(1 − γ5)u(k2), and for anti–neutrino reaction lµ = v̄(−k2)γµ(1 − γ5)v(−k1).

Consequently,

〈
f |ĤW |i

〉
=

G√
2

∫
d3~xe−i~q·~x[l0J 0

fi(~x)−~l · ~Jfi(~x)
]
. (2.6)

To continue, it is useful to choose the ẑ direction parallel to the momentum transfer

~q, so the plane wave can be expanded as

e−i~q·~x =
∑

J

iJ
√

4π(2J + 1)jJ (qx)YJ0(−x̂), (2.7)

where jJ(x) is the spherical bessel function of order J , and YJM(x̂) are the spherical

harmonics.

Since the vector ~l is written in the same spherical orthonormal coordinate system

ê±1, ê0 = ~q
q

it is useful to invert the definition of the vector spherical harmonics:

~YJLM ≡
[
YL ⊗ ê

](J)

M
, to get YLmeλ =

∑
JM (Lm1λ|JM) ~YJLM .

For the nuclear current Ĵ µ(~x), a multipole analysis of the current provides natural

expansion and some insight in low energy regime. We define the multipole operators,

viz the Coulomb, electric, magnetic and longitudinal operators:

ĈJM(q) =

∫
d~xjJ (qx)YJM(x̂)Ĵ0(~x) (2.8)

ÊJM(q) =
1

q

∫
d~x~∇× [jJ (qx)~YJJM(x̂)] · ~̂J (~x) (2.9)

M̂JM(q) =

∫
d~xjJ (qx)~YJJM(x̂) · ~̂J (~x) (2.10)

L̂JM(q) =
i

q

∫
d~x~∇[jJ(qx)YJM(x̂)] · ~̂J (~x) (2.11)

respectively.

For unoriented and unobserved targets, one has to sum over all possible final

states, and average over all initial states. For the nuclear sector, this procedure gives
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the following expression:

∑

f

1

2Ji + 1

∑

Mi

∑

Mf

|〈f |ĤW |i〉|2δ(Ef − Ei − ǫ) =
G2

2

4π

2Ji + 1
× (2.12)

×
{
∑

J≥1

[
1

2

(
~l ·~l∗ − l3l∗3

)(
RÊJ

+RM̂J

)
− i

2

(
~l ×~l∗

)
3
2ReRÊJM̂∗

J

]
+

+
∑

J≥0

[
l3l

∗
3RL̂J

+ l0l
∗
0RĈJ

− 2Re
(
l3l

∗
0RĈJ L̂∗

J

)]
}

Ji is the total angular momentum of the initial nuclear state (which is usually the

ground state). We use here the nuclear response functions

RÔ1Ô2
≡
∫∑

f

δ(Ef − Ei − ǫ)
〈
f |Ô†

1|i
〉〈
f‖Ô2‖i

〉
, (2.13)

which should be calculated using a model for the nucleus. The
∫∑

sign in the response

function is a sum over discrete bound states, and an integral over final states which

are in the continuum. For brevity we use the notation RÔ ≡ RÔÔ.

For the lepton sector, one sums over all possible helicities of the ejected lepton. In

the case of neutrino scattering, there is no need in averaging on initial helicities as

there is only one (anti) neutrino helicity in nature that interacts via the electro-weak

force. The lepton summation is simply converted to the calculation of traces of Dirac

spinors, as explained in Appendix B.

An additional effect, which needs to be taken into account for charged lepton pro-

duction, is the deformation of the lepton wave function due to the long–range elec-

tromagnetic interaction with the nucleus. This is done in an approximated way using

the Fermi function (Fermi, 1934).

The final result for the differential cross section of a beam of neutrinos scattering
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on unpolarized and unobserved targets, into solid angle dΩ is thus:

dσ(a)

dΩdkf

=
2G(a)2

2Ji + 1
F (a)(Zf , kf)k

2
f× (2.14)

×
{[

1−
(
k̂i · q̂

)(
~βf · q̂

)]∑

J≥1

(
RÊJ

+RM̂J

)
∓ q̂ ·

(
k̂i − ~βf

)∑

J≥1

2ReRÊJM̂∗
J
+

+
∑

J≥0

[[
1− k̂i · ~βf + 2

(
k̂i · q̂

)(
~βf · q̂

)]
RL̂J

+
(
1 + k̂i · ~βf

)
RĈJ

− 2q̂ ·
(
k̂i + ~βf

)
ReRĈJ L̂∗

J

]}

where Zf is the charge of the final nucleus, and ~βf =
~kf√

m2
f
+k2

f

is the outgoing lepton

velocity (mf is the mass of the lepton). The − sign is for neutrino scattering, and

the + sign is for anti–neutrino. The superscript (a) = 0,±1 indicates the process:

a = 0 Neutral current, for which theG(0) = G and the screening function F (0)(Zf , kf) =

1.

a = ±1 Charge changing current. G(±) = G cos θC ≈ 0.974G (θC is the Cabibbo

angle, mixing the u and d quarks) and the screening function is the Fermi

function (Fermi, 1934):

F (±)(Zf , kf) = 2(1 + γ0)(2kfRf )
2(γ0−1) | Γ(γ0 + iρ) |2

| Γ(2γ0 + 1) |2 e
πρ (2.15)

with α ≈ 1/137 is the fine structure constant, Rf is the radius of the final

nucleus, ρ = ∓αZf/βf , and γ0 =
√

1− (αZf)2 (Γ(x) is the Gamma function).

2.2 Relations Between Multipoles and the Siegert

theorem

The multipole decomposition is a systematic expansion in the possible angular mo-

menta exchange in a reaction. This makes it a powerful and intuitive tool to analyze

reactions, in which the quantum numbers of the final state are given. On a different

perspective, one can view the multipole decomposition essentially as expansion in
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powers of the momentum transfer, since jJ(ρ) ≃ ρJ

(2J+1)!!
for ρ ≪ 1. Thus, it pro-

vides a tool when investigating low energy reactions with qR < 1 (R is the radius

of the nucleus), for which a finite number of multipoles are sufficient to estimate the

cross-section to given accuracy.

The electro–weak reactions discussed in the scope of this work are investigated

up to pion threshold ∼ 140 MeV, thus the multipole decomposition is applicable and

efficient.

In this section we will discuss some important properties of the multipole operators

and relations between multipoles, helpful in calculations. It is useful to understand

that the longitudinal, Coulomb and electric multipoles are of normal parity, i.e. if

one denotes the parity of the current by π then their parity is π · (−)J . The magnetic

operator parity is π · (−)J+1

An important relation exists between the electric and the longitudinal operators.

In order to find it, one uses the following formulas,

~∇ρ[jJ(ρ)YJM(ρ̂)] =

√
J + 1

2J + 1
jJ+1(ρ)~YJ J+1M(ρ̂) +

√
J

2J + 1
jJ−1(ρ)~YJ J−1 M(ρ̂)

~∇ρ × [jJ(ρ)~YJJM(ρ̂)] = −i
√

J

2J + 1
jJ+1(ρ)~YJ J+1 M(ρ̂) + i

√
J + 1

2J + 1
jJ−1(ρ)~YJ J−1 M(ρ̂).

This leads to,

~∇ρ × [jJ (ρ)~YJJM(ρ̂)] = i

√
J + 1

J
~∇ρ[jJ(ρ)YJM(ρ̂)]− i

√
2J + 1

J
jJ+1(ρ)~YJ J+1 M(ρ̂).

(2.16)

Thus,

ÊJM =

√
J + 1

J
L̂JM − i

√
2J + 1

J

∫
d~xjJ+1(qx)~YJ J+1 M(x̂) · ~̂J (~x). (2.17)

One notes that since the leading order in ÊJM (and L̂JM) is O((qR)J−1), then the

second term is smaller by a factor of (qR)2. Finally, this leads to the following relation
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for low momentum transfer:

ÊJM ≈
√
J + 1

J
L̂JM . (2.18)

2.2.1 Siegert Theorem

An additional relation between multipole operators exists for conserved currents,

inter alia the electro–magnetic current and the vector part of the weak current. For a

conserved current ~∇· ~̂J = −i[Ĥ, Ĵ0], and thus its matrix element (between eigen–states

of the Hamiltonian) satisfies: ~∇ · ~J = −iωJ0. Let us first look at the longitudinal

operator:

L̂JM(q) =
i

q

∫
d~x~∇[jJ(qx)YJM(x̂)] · ~̂J (~x) = − i

q

∫
d~x[jJ (qx)YJM(x̂)] · ~∇ · ~̂J (~x) = −ω

q
ĈJM(q)

(2.19)

We use Eq. (2.17) to connect the electric multipole to the Coulomb multipole,

ÊJM = −ω
q

√
J + 1

J
ĈJM − i

√
2J + 1

J

∫
d~xjJ+1(qx)~YJ J+1 M(x̂) · ~̂J (~x). (2.20)

These relations are called the Siegert theorem (Siegert, 1937). In low energy, the

second term in Eq. (2.20) is negligible with respect to the first one.

The strength of the Siegert theorem is in the connection it makes between currents

and charge. It implies that for conserved currents in low energy, one can calculate

all the corrections due to meson exchange currents by calculating the single–nucleon

Coulomb operator. This not only simplifies calculation, but also keeps the operators

model–independent.

2.3 Photoabsorption on Nuclei Up To Pion Thresh-

old

Photoabsorption is the process in which a real photon is absorbed in a nucleus. The

process can result in excitation of the nucleus to a bound state, but can also result
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in a break up of the nucleus, a process called photodisintegration. The latter is the

case for all photoabsorption processes of 4He, since it has no bound excited states.

The interaction Hamiltonian of an electro–magnetic process can be found by

looking at minimal substitution of the momentum in the kinetic energy operator:

(~̂p−e ~̂A(r))2 = p̂2 + e2Â2−e{~̂p, ~̂A}. The first two terms are the kinetic energies of the

nucleus and the photon field, and the last is the interaction term. Hence, it is clear

that the interaction Hamiltonian is,

ĤEM =
4πα√

2

∫
d3~xÂµ(~x)Ĵ µ(~x). (2.21)

where α is the fine structure constant, Âµ is the photon field, and Ĵ µ is the nuclear

electro–magnetic current. The photon field in the Coulomb gauge (i.e. ~∇ · Âµ(~x)) is

given by,

~̂A =
∑

~k

∑

λ=±1

(2ωk)
−1/2

[
ê~kλâ~kλe

i~k·~x + h.c.
]

(2.22)

Due to the gauge only the transverse polarizations, λ = ±1, participate.

The analogy to the weak Hamiltonian is clear (cf. Eq. 2.5), so the calculations

are in analogy, but the kinematics is different.

Let us consider a photon of momentum ~q and energy ω = |q|, as the photon is

absorbed. The initial (final) nucleus state is denoted by | i/f
〉
, with energies Ei/f

respectively (by definition ω = Ei−Ef). The photon is absorbed, thus the surviving

matrix element is
〈
~kλ | â†~k′λ′

| 0
〉

= δ~k~k′δλλ′ .

Due to the possible polarizabilities, only the magnetic and electric enter in the

calculation. By using the golden rule, we get the final result for the total photoab-

sorption cross–section:

σ(ω) = 4π2αω
∑

J

[RÊJ
(ω) +RM̂J

(ω)]. (2.23)



3Chiral Effective Field

Theory

Nuclear theory is believed to be the low–energy reflection of quantum chromodynam-

ics (QCD). Though QCD properties are well known, deriving the nuclear forces is not

possible directly, as QCD is non-perturbative in low energy.

Two seminal ideas proposed by Weinberg (1979) have pointed the way to a solution

to the problem. The first idea suggests that a Lagrangian which includes all possible

terms consistent with the symmetries of the underlying theory, would result in the

most general S–matrix consistent with the theory. The second idea introduces a

scheme which organizes the terms to dominant and less dominant contributions to

the S–matrix. This way, the anticipated low energy expansion for QCD becomes

possible. These ideas were used in the last 15 years to construct a nuclear Lagrangian

based on an effective field theory for low-energy QCD, named chiral perturbation

theory (χPT) (see for example (Ordóñez et al., 1994; van Kolck, 1994; Epelbaum

et al., 2000; Entem and Machleidt, 2003)).

In this chapter, the application of effective field theory to QCD is presented, and

used to get a description of the currents in a nucleus. In turn, these currents interact

with electro-weak probes, determining their coupling with matter. The effective field

theory is constructed to describe nuclear electro–weak processes of typical energy of

up to 100 MeV. Thus the relevant degrees of freedom are pions and nucleons.

3.1 QCD symmetries at low energy

QCD, as a field theory, describes the interaction among quarks and gluons. Its un-

derlying gauge symmetry is the non–abelian color SU(3) Lie algebra. The masses of

the up and down quarks, which are the building blocks of nucleons, are small (Yao

et al., 2006): mu = 2±1 MeV and md = 5±2 MeV. Thus, these masses are negligible

20
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with respect to the QCD mass scale (∼ 1 GeV). In the context of nuclear physics, it

is natural to treat QCD in the limit of zero quark masses, with restriction to the up

and down quarks.

Following these restrictions, one writes the quark field composed of two compo-

nents:

(
u

d

)
. The massless quark field enters in the QCD Lagrangian as,

Lq
QCD = iq̄γµDµq. (3.1)

The quark field has a left and right symmetry. We define right and left handed

components of the quark field: qR,L = 1
2

(
1± γ5

)
q, respectively. Using the properties

of the γ matrices (see Apendix B), the Lagrangian can be separated,

Lq
QCD = iq̄RγµDµqR + iq̄LγµDµqL. (3.2)

One may check that this Lagrangian is invariant under the global transformations:

qR =

(
uR

dR

)
7→ exp

(
− i~ΘR · ~τ

2

)
(
uR

dR

)
(3.3)

and,

qL =

(
uL

dL

)
7→ exp

(
− i~ΘL · ~τ

2

)
(
uL

dL

)
, (3.4)

where ~τ are pauli matrices generating the flavor symmetry between up and down. As

right and left quarks do not mix, this implies the chiral symmetry SU(2)R × SU(2)L

of QCD. One can rewrite this to a symmetry on the original quark field:

q =

(
u

d

)
7→ exp

[
− i1

2

(
1± γ5

)
~Θ · ~τ

2

]
(
u

d

)
. (3.5)
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The chiral symmetry can be transformed linearly to a vector symmetry,

q =

(
u

d

)
7→ exp

[
− i~ΘV · ~τ

2

]
(
u

d

)
, (3.6)

and axial symmetry,

q =

(
u

d

)
7→ exp

[
− iγ5

~ΘA · ~τ
2

]
(
u

d

)
. (3.7)

Nöther’s theorem suggests the existence of conserved vector and axial currents: ~V µ =

q̄γµ ~τ
2
q and ~Aµ = q̄γµγ5

~τ
2
q.

The problem is that this symmetry entails a degeneracy of ground states. A vector

degeneracy is found, the isospin symmetry , which couples for example the proton and

neutron to a single entity, the nucleon. This is not the case for the axial symmetry,

as multiplets of opposite parities are not observed in nature. One concludes that in

nature SU(2)R × SU(2)L is broken to SU(2)V .

This is an example of spontaneous breaking of symmetry, i.e. a symmetry of the

Lagrangian which is not realized in the ground state. A consequent of thus is the

existence of Goldstone–Nambu bosons, massless particles that posses the quantum

numbers of the broken generators. In the case of the chiral symmetry, the Goldstone

bosons should be pseudoscalar. The pions, pseudoscalar isospin triplet, are considered

to be the Goldstone bosons of the chiral symmetry. As a result of the non-vanishing

up and down small masses, the pions obtain mass, but they are light
(

mπ

mN

)2

≈ 0.02.

The appearance of Goldstone–Nambu bosons is a result of the Goldstone theorem

(Goldstone et al., 1962). This theorem gives an additional information regarding the

structure of the transformations. The pion field is defined by,

ξ = exp

(
i
~π · ~τ
2fπ

)
. (3.8)
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Goldstone theorem leads to the transformation rule for U ≡ ξ2

U = exp

(
i
~π · ~τ
fπ

)
7→ LUR†, with L ∈ SU(2)L and R ∈ SU(2)R (3.9)

Thus, U transforms as the (2̄, 2) representation of SU(2)R × SU(2)L. This is a non–

linear realization of the symmetry, as U †U = 1 and detU = 1.

This implies the following transformation rules on the nucleon and pion fields:

N 7→ hN (3.10)

ξ 7→ Lξh† = hξR† (3.11)

with h ∈ SU(2)V , local matrix.

With these transformation laws, it is possible to build Lorentz invariant terms to

include in the Lagrangian of the effective theory,

Leff =
∑

A

cALA (3.12)

This is an effective theory, thus renormalizability is inserted via the low energy coef-

ficients. This sum however is infinite. Hence, a logic in deciding the order of a term

in the expansion is needed.

3.2 Power Counting of Chiral Perturbation The-

ory

EFT of low energy QCD is called Chiral Perturbation Theory (χPT). The theory

has a natural cutoff scale, the chiral symmetry breaking scale, which is of the order of

the nucleon mass Λ ∼ 1 GeV. The expansion relies on the small momentum typical

to the needed process Q, thus the expansion parameter is
(
Q/Λ

)
.

The contribution of an interaction is determined by its power:
(
Q/Λ

)ν
. Let a

scattering process be described by a diagram. The diagram is built of C separately

connected pieces, A nucleons, L loops. The diagram includes several vertices, each
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involves ni nucleon fields, di pion masses or derivatives. The order ν is given by

(Weinberg, 1996):

ν = −2 + 2A− 2C + 2L+
∑

i

∆i (3.13)

with ∆i ≡ di + ni

2
− 2.

One has to note that ν is bounded from below, thus enabling systematic expansion.

This counting holds not only for diagrams, but also for Lagrangian terms. The

counting for a Lagrangian term is similar to a vertex: νL = d+ n
2
.

The power counting formalism introduced here is applicable when the choice of

cutoff Λ is relevant for the energy-regime of the process (see discussions by Nogga

et al. (2005); Epelbaum and Meissner (2006)).

3.3 Effective Lagrangian

As aforementioned, the chiral effective field theory takes into account pions and nu-

cleons. Not surprisingly, the Lagrangian includes three parts, a pure pion, a pure

nucleon and pion–nucleon interaction Lagrangian. In this section I will review the

different parts of the Lagrangian, and emphasize those parts needed for deriving the

currents within the nucleus. In general, Lagrangians to next–to–leading order (NLO)

are considered, built using the formalism introduced in Coleman et al. (1969); Callan

et al. (1969) and following the discussion in Ananyan et al. (2002).

3.3.1 Pion Lagrangian

The Lagrangian has to be a Lorentz invariant scalar term. Thus, it should include

even number of derivatives/pion masses. Since the expansion used here is up to NLO,

the pion Lagrangian term is expanded to ν = 2, in the power counting introduced

previously. Thus,

L(2)
ππ =

f 2
π

4
Tr
[
∂µU∂µU† + m2

π

(
U + U†)] (3.14)

fπ ≈ 92.4 MeV is the pion decay constant, calibrated from this process at low pion

four momentum. The pion mass is taken as mπ = 139 MeV.
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3.3.2 Pion–Nucleon Interaction Lagrangian

The pion–nucleon interaction, to lowest order, arises from the nucleon free Dirac

Lagrangian. The reason is that the Dirac Lagrangian iN̄
(
γµ∂

µ−M0

)
N is not invariant

under the transformation rules of Eq. (3.10). This is not surprising, as the Yang–Mills

theory demands adding gauge term to the derivative. The additional term has to be

of chiral order 1, equivalent to the derivative. It can be easily checked that this term

is:

vµ ≡ −
i

2

(
ξ∂µξ

† + ξ†∂µξ
)
. (3.15)

The chiral covariant derivative is: Dµ = ∂µ + ivµ. The notation vµ indicates the

vector–like parity of this term. Trivially, a term with axial–like parity of the same

chiral order is,

aµ ≡ −
i

2

(
ξ∂µξ

† − ξ†∂µξ
)
. (3.16)

This leads to the leading order pion–nucleon Lagrangian,

L(2)
πN = N̄ {iγµDµ + gAγ

µγ5aµ −M0}N (3.17)

The low energy constant (LEC) introduced here is the axial coupling constant gA =

1.2670± 0.0035 (Yao et al., 2006). M0 ≈ 890 MeV is the nucleon bare mass.

Expanding Eq. (3.17) to leading order in the pion field, one gets the leading

interaction Lagrangian:

L(2)
int = − 1

4f 2
π

ǫabcπaN̄( 6∂πb)τ cN +
gA

2fπ

N̄( 6∂πa)γ5 (3.18)

Using this, one constructs the Feynman diagrams related to this interaction La-

grangian.

Constructing the next–to–leading order contribution to the pion–nucleon interac-

tion is easier, as the building blocks are aµ and vµ, and U . It is easily shown that



Chapter 3. Chiral Effective Field Theory 26

there are two terms at this order:

δ1L(3)
πN =

2ĉ3
MN

N̄NTr (aµa
µ) (3.19)

δ2L(3)
πN = i

ĉ4
MN

N̄ [aµ, aν ]σ
µνN, (3.20)

Where σµν = i
2
[γµ, γν ]. The LECs here are calibrated using π − N scattering data

ĉ3 = −3.66± 0.08, and ĉ4 = 2.11± 0.08 (Bernard et al., 1995).

In view of the need of Feynman diagrams, one gets to this order:

L(3)
int =

iĉ4
2f 2

πM
N̄~τ · (∂µ~π × ∂ν~π)σµνN +

ĉ3
f 2

πM
N̄N∂µπ

a∂µπa (3.21)

3.3.3 Nucleon Contact terms in the Lagrangian

Nucleon contact terms represent the short–range nuclear force, usually connected to

the exchange of heavy mesons, such as the ω(782). This mass is too close to the QCD

scale, so it cannot be described as a multi–pion interaction using χPT. The contact

terms are important for the purpose of renormalization and dimensional regularization

of pion–exchange. In case of infinities, the contact terms act as counter–terms.

The contact terms include two nucleons, without meson fields. Being the represen-

tative of higher energy modes, these terms are not constrained by chiral symmetry,

and required to fulfill parity and time-reversal symmetries (Ordóñez et al., 1994).

Parity suggests even numbers of derivatives. The LO has no derivatives, and the

NLO consist of two derivatives/pion masses.

Contact terms appear also when pions, electro-weak leptons, photons or other

probes couple to pairs of nucleons. This gives rise to a contribution of few nucleon

terms to the nuclear force (Grdestig and Phillips, 2006), and two nucleon exchange

currents. The leading effects are represented by a term in the chiral Lagrangian (van

Kolck, 1994),

L4 = −2D1

(
N̄γµγ5aµN

) (
N̄N

)
. (3.22)

In general, the LECs in the contact terms should be calibrated by nuclear matter

experiments. In the current case the short–range LEC is calibrated using the triton
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half life. This process is discussed and applied in Sec. 7.2.

3.4 Currents in the Nucleus

The axial and vector symmetries of the Lagrangian imply conserved Nöther currents.

These Currents are,

J aµ ≡ − ∂L
∂(∂µǫa(x))

(3.23)

where the superscript a indicates isospin components. ǫa(x) are local, infinitesimal

parameters of the symmetry transformation.

A vector transformation has to be invariant to parity. The definition of parity, P :

L ⇄ R, means that for a vector transformation with infinitesimal group parameters

~β,

L = R = exp

(
i
~β · ~τ
2

)
. (3.24)

The h(x) transformation field can be found using Eq. (3.10), to get h(x) = L = R.

For an axial transformation one gets

L = exp

(
i
~β · ~τ
2

)
, R = L† = exp

(
−i
~β · ~τ
2

)
. (3.25)

In this case h(x) should be solved from its definition in Eq. (3.10). Putting h(x) =

exp
(
i~γ·~τ

2

)
, one can find,

~γ = −2(β̂ × π̂) arctan

[
tan β

2
tan π

2fπ

1− (β̂ · π̂)tan β
2

tan π
2fπ

]
= −(~β × π̂) tan

π

2fπ

+O(β2) (3.26)

Using this, one can derive the currents corresponding to the Lagrangians of the
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previous section. The vector currents:

V(2)aµ
ππ = −if

2
π

4
Tr
{
τa
[
U∂µU † + U †∂µU

]}
= (~π × ∂µ~π)asinc2

(
π

fπ

)
(3.27)

= (~π × ∂µ~π)a +O(π3)

V(2)aµ
πN =

1

4
N̄γµ[ξτaξ† + ξ†τaξ]N +

1

4
gAN̄γ

µγ5[ξτ
aξ† − ξ†τaξ]N = (3.28)

= N̄γµ τ
b

2
N [cos(

π

fπ

)(δab − π̂aπ̂b) + π̂aπ̂b] + gAǫ
abcπ̂b sin(

π

fπ

)N̄γµγ5
τ c

2
N =

= N̄γµ τ
a

2
N +

gA

fπ

ǫabc~πbN̄γµγ5
τ c

2
N +O(π2)

V(3)aµ
πN = − iĉ4

2M
N̄σµν [ξ†τaξ − ξτaξ†, aν ]N −

2ĉ3
M

N̄NTr[ξ†τaξ − ξτaξ†, aµ] (3.29)

=
ĉ4
Mf 2

π

N̄σµν [~π × (∂ν~π × ~τ )]aN

where sinc(x) = sin x
x

. The axial currents:

A(2)aµ
ππ = −if

2
π

4
Tr
{
τa
[
U∂µU † − U †∂µU

]}
(3.30)

= −fπ∂µπ
b

[
sinc

(
2π

fπ

)(
δab − π̂aπ̂b

)
+ π̂aπ̂b

]

= −fπ∂µπ
b +O(π2)

A(2)aµ
πN =

1

4
N̄γµ[ξτaξ† + ξ†τaξ]N +

1

4
gAN̄γ

µγ5[ξτ
aξ† − ξ†τaξ]N = (3.31)

= −ǫabcπ̂b sin(
π

fπ

)N̄γµ τ
c

2
N − gAN̄γ

µγ5
τ b

2
N [cos(

π

fπ

)(δab − π̂aπ̂b) + π̂aπ̂b]

= −gAN̄γ
µγ5

τa

2
N − 1

fπ

ǫabc~πbN̄γµ τ
c

2
N +O(π2)

A(3)aµ
πN = − iĉ4

2M
N̄σµν [ξ†τaξ + ξτaξ†, aν ]N −

2ĉ3
M

N̄NTr[ξ†τaξ + ξτaξ†, aµ] (3.32)

=
ĉ4
fπM

ǫabc∂νπ
bN̄τ cσµνN − 2ĉ3

fπM
N̄N∂µπa +O(π2)

A(3)aµ
NN = −D1N̄γ

µγ5τ
aNN̄N (3.33)

The notation used in the upper index denotes: (νL) is the chiral order, a = 0,±1 is the

isospin projection, and µ = 0, .., 3 is the Lorentz vector projection. The expansion is
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used to construct the Feynman diagrams for the currents (see Appendix D).

3.5 Nuclear Currents Operators

Using the equations of the two previous sections, one constructs the Feynman rules.

The rules derived from the Lagrangian are used to construct nuclear forces form χPT.

Let us assume a case, in which the interaction Lagrangian is

L̂ = −gSµ(~x)Ĵ µ(~x), (3.34)

where Sµ is an outer source current, and Ĵ µ is the nuclear current. This Lagrangian

is relevant for low–energy electro-weak interaction (cf. Eqs. (2.5,2.21)). The Feynman

rules derived from the Nöther of the Lagrangian symmetry, are used to construct the

nuclear currents.

An extensive description of the Feynman rules and the derivation of the nuclear

currents appear in Appendix D. In view of the typical momentum of the processes

in discussion, one can use a soft probe approximation and write the currents to first

order in the momentum transfer. It is also clear that any recoil of nucleons is smaller,

and thus the use of heavy baryon expansion is justified, expanding the nucleon spinors

to leading order in 1
MN

(see Appendix C)

The leading nuclear current operators are single nucleon operators, i.e. describing

a coupling to only one nucleon within the nucleus, as if it was a free particle. The next

contribution involves two nucleons, in which case the probe interacts via a contact

term of two nucleons or a nucleon–pion vertex.

The resulting matrix elements are expressed in momentum space, and as they

originate in EFT approach, they are valid up to a cutoff momentum Λ. The cutoff

momentum is chosen such that Λ≫ Q, and lower than QCD scale. A proper choice

is thus Λ = 400 − 800 MeV, as in (Park et al., 2003; Ordóñez et al., 1994; Grdestig

and Phillips, 2006). The renormalization group theory states that an observable does

not depend on the cutoff momentum. Any cutoff dependence implies excitation of

higher energy degrees of freedom. Thus, the cutoff dependence is a consistency check
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for the theory. In the Lagrangians of the previous section, the only LEC with a

connection to higher energy modes is d̂r, thus one should expect a rather steep cutoff

dependence for this LEC, and its cutoff dependence is chosen in such manner that

the triton half–life reproduces its experimental value.

The nuclear wave functions are written in configuration space, thus one should

use a proper transform to move the operators to this basis. Fourier transform is of

no help as it includes high momentum. Following Park et al. (2003), let us define the

cutoff Fourier transform of an n-body current as

Ĵ a
12...n(~x1, . . . , ~xn; ~q) = (3.35)

=

[
n∏

i=1

∫
d3ki

(2π)3
ei~ki·~xiSΛ(~k2

i )

]
(2π)3δ(3)(~q + ~k1 + ~k2 + · · ·+ ~kn)Ĵ a

12...n(~k1, . . . , ~kn; ~q).

The cutoff function, SΛ(k) = exp(− k2

2Λ2 ), does not influence one body currents, due

to the momentum conserving δ function. For Q . Λ the cutoff function SΛ(k) is

unity, and it approaches zero for Q & Λ. This choice of cutoff function is convenient

both for numerical and analytical calculations. One should note that this cutoff

function inserts an additional k2

Λ2 dependence to the currents. This is, however, a

minor, negligible effect.

For low energy reactions, where meson exchange currents (MEC) are a perturba-

tive effect, one can use the long wavelength approximation q = 0. Thus, the Fourier

transform of a MEC depends only on the relative coordinate ~x12 = ~x1 − ~x2, and

Aa
12(~x12) =

∫
d3k

(2π)3
e−i~k·~x12S2

Λ(~k2)Aa
12(
~k1 = −~k,~k2 = ~k). (3.36)

As the Fourier transform acts on pion propagator, the needed functions are,

δ
(3)
Λ (~r) ≡

∫
d3k

(2π)3
ei~k·~rS2

Λ(~k2), (3.37)

yπ
Λ0(r) ≡

∫
d3k

(2π)3
ei~k·~rS2

Λ(~k2)
1

~k2 +m2
π

, (3.38)
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yπ
Λ1(r) ≡ −

∂

∂r
yπ

Λ0(r), (3.39)

yπ
Λ2(r) ≡

1

m2
π

r
∂

∂r

1

r

∂

∂r
yπ

Λ0(r). (3.40)

One reproduces the usual Yukawa functions in the limit Λ→∞.

This process leads to operators acting on one nucleon in the case of single nucleon

operator, or on a pair of nucleons in the case of MEC operator. To move A nucleons

(or A(A−1)
2

pairs of nucleons) to their coordinates in configuration space one uses first

quantization. For the single nucleon operators,

Ĵ (1)µ(~x) =
A∑

i=1

Ĵ µ
1 (~ri)δ

(3)(~x− ~ri), (3.41)

and for the MEC opeartors,

Ĵ (12)µ(~x) =

A∑

i<j

Ĵ µ
12(~rij)δ

(3)(~x− ~rij). (3.42)

This leads to the final form of the operators. The single nucleon operators, which

are often called the impulse approximation (IA) are the same as those derived from

standard nuclear physics approach:

V̂(1)0
i = δ(3)(~x− ~ri)−

1

2

~∇
2MN

·
{
~σi ×

~pi

2MN
, δ(3)(~x− ~ri)

}
(3.43)

Â(1)0
i = −gA

(
~σi ·

{
~pi

2MN
, δ(3)(~x− ~ri)

}
− 1

2

{(
pi

2MN

)2

, δ(3)(~x− ~ri)

})
(3.44)

~̂V(1)
i =

{
~pi

2MN
, δ(3)(~x− ~ri)

}
(3.45)

~̂A(1)
i = −gA

(
~σiδ

(3)(~x− ~ri)−
~σ

2

{
~pi

2MN

,

{
~pi

2MN

, δ(3)(~x− ~ri)

}}
(3.46)

+

{
~pi

2MN

· ~σ,
{

~pi

2MN

, δ(3)(~x− ~ri)

}}
+

~∇×
4MN

{
~pi

2MN

, δ(3)(~x− ~ri)

})

Due to the Siegert theorem (Sec. 2.2.1) for low energy reactions, the conservation of
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vector currents implies that neither the vector current nor the vector MEC should be

calculated explicitly, as they are included implicitly in the calculation of the single

nucleon charge operator.

The axial charge MEC operator is:

Â0,a
12 (rij) = −gAmπ

4f 2
π

(~τ (1) × ~τ (2))a(~σ(1) + ~σ(2)) · r̂ijy
π
1Λ(rij), (3.47)

and the axial MEC,

Âi,a
12 (rij) =

gA

2Mf 2
π

{
Oi,a

P yπ
1Λ(rij) + ĉ3(T i,a

⊕ − T i,a
⊖ )m2

πy
π
2Λ(rij)−

−ĉ3(Oi,a
⊕ −Oi,a

⊖ )(
1

3
δ
(3)
Λ (~rij)−

1

3
m2

πy
π
0Λ)−

−(ĉ4 +
1

4
)Oi,a

⊗ m2
πy

π
2Λ(rij)−

− (ĉ4 +
1

4
)Oi,a

⊗ (
2

3
δ
(3)
Λ (~rij)−

2

3
m2

πy
π
0Λ)

}
+

+
D1

2
(Oi,a

⊕ +Oi,a
⊖ )δ

(3)
Λ (~rij) (3.48)

where

~Oa
P ≡ −

mπ

4
(~τ (1) × ~τ (2))a(~P1~σ

(2) · r̂12 + ~P2~σ
(1) · r̂12) (3.49)

Oi,a
⊙ ≡ (~τ (1) ⊙ ~τ (2))a(~σ(1) ⊙ ~σ(2))i, (3.50)

T i,a
⊙ ≡

(
r̂i
12r̂

j
12 −

δij

3

)
Oi,a

⊙ , (3.51)

and ⊙ = ×,+,−.

It is important to notice that the contact parts of the current, i.e. terms proportional

to δ(r), do not vanish only for pairs in a relative L = 0 state. This implies S+T = 1,

meaning either S = 0 or T = 0. Consequently, when O⊕ acting on these states, it

vanishes.

An additional simplification is achieved by noting that O⊗ and O⊖ are connected.

The fermion statistics implies ΞτΞσΞr = −1, where Ξτ exchanges isospin of the two

particles, Ξσ exchanges spin, and Ξr exchanges locations. A trivial identity for Pauli
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matrices: ~σ1 × ~σ2 = i(~σ1 − ~σ2)Ξσ. Thus, O⊗ = −O⊖Ξr, and as Ξrδ(r) = 1 the

connection is clear (Park et al., 2003).

Thus, all the coefficients of δ(3)(~r) are combined into a single dimensionless LEC1

d̂r = 2Mf2
π

gA
D1 + ĉ3

3
+ 2

3
(ĉ4 + 1

4
). The O(Λ−2) appearing in δ

(3)
Λ (~r) has minor effect,

which cancels when renormalizing d̂r. The renormalization d̂r(Λ) for a range of cutoff

momentum Λ = 400− 800 MeV, is calibrated to reproduce the triton half–life.

Bearing this in mind, the axial MEC are

Âi,a
12 ( ~rij) =

gA

2Mf 2
π

d̂rOi,a
⊖ δ

(3)
Λ (~rij)−

gAm
2
π

2Mf 2
π

Oi,a
P yπ

1Λ(r12)− (3.52)

− gAm
2
π

2Mf 2
π

[
ĉ3
3

(
Oi,a

⊕ +Oi,a
⊖
)

+
2

3

(
ĉ4 +

1

4

)
Oi,a

⊗

]
yπ

0Λ(rij)−

− gAm
2
π

2Mf 2
π

[
ĉ3
(
T i,a
⊕ + T i,a

⊖
)
−
(
ĉ4 +

1

4

)
T i,a
⊗

]
yπ

2Λ(rij)

3.6 Standard Nuclear Physics and EFT

This chapter has shown the vast advantage in applying EFT approach for the nuclear

problem. The theory provides a perturbative approach with its symmetries completely

under control. This fact gives a predictive measure to the approach.

These advantages are missing in the standard nuclear physics approach (SNPA),

which is phenomenological. However, SNPA approach has many successes, using

Lagrangians that include Nucleon–Nucleon potentials and three nucleon forces one

can describe the low lying spectrum of nuclei with A < 12. SNPA Lagrangians are

used to calculate electro–weak and strong nuclear reactions, to good accuracy. The

Lagrangians are built to reproduce hundreds nucleon–nucleon scattering processes

with energies up to 500 MeV, with χ2 per datum close to unity. For example, the

binding energies of light nuclei are reproduced using these forces to accuracy of tens

of keV.

In order to reach this level of accuracy with EFT based Lagrangians, one has to

expand to at least next–to–next–to–next–to–leading order, which includes more than

1Different variations of EFT (e.g. (Park et al., 2003)) lead to different descriptions of the short
range forces. These, however, renormalize to the same LEC.
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20 parameters. This was done only lately, by Epelbaum et al. (2000); Entem and

Machleidt (2003), and still has not arrived the level of χ2 achieved in SNPA.

Lately, Rho et al. (Rho, 2006; Park et al., 2003) tried to combine the advantages

of both approaches. The idea relies on the fact that albeit phenomenological, the

SNPA approach holds correct long range behavior. Thus, one may use the nuclear

wave functions predicted by SNPA, and calculate reactions using the nuclear currents

derived in EFT. The typical accuracy for reactions is in the percentage level, hence it

is sufficient to expand the forces up to next–to–leading order, with only one unknown

LEC needed for renormalization.

This hybrid approach, named EFT*, is of course not consistent, as the currents

and forces are not derived from the same Lagrangian. Nevertheless, it has been

used to calculate reactions of A = 2, 3, 4 nuclei (Rho, 2006; Park et al., 2003). The

minor response of the calculated cross-sections to changes in the cutoff momentum

is an evidence for the power of the method. This method will be used in this work

(Chap. 7) for the calculation of neutrino scattering on A = 3 and 4He nuclei.



4Lorentz Integral

Transform Method

The response of a system to excitations is a key ingredient in understanding its

properties: stability, energy levels, structure, etc.

For an inclusive reaction with energy transfer ω, described by an interference

between two operators O1(~q) and O2(~q), the response function is defined as:

RÔ1Ô2
(ω, ~q) ≡

∫∑

f

δ(Ef −Ei − ω)
〈
i|Ô†

1(~q)|f
〉〈
f |Ô2(~q)|i

〉
, (4.1)

where |i/f
〉

and Ei/f denote the initial and final wave functions and energies, respec-

tively. In order to calculate this observable, one has to consider every possible final

state, including those which are in the continuum. For the light nuclei, which have

few bound excited states, if any, the continuum must be taken into account if one

wants to consider ω 6= 0. This makes an explicit calculation of the cross–section for

such nuclei a difficult task, not only as one has to keep track of all break–up channels,

but also since a general continuum state wave function is out of reach already for

A = 4.

However, the response function is an integral quantity, as it depends only on pro-

jections of the initial state. This has been the motivation for using integral transforms

on the response functions, by which, as shown in the next Section, one can avoid an

explicit calculation of final state.

One of these transforms is Lorentz Integral Transform (LIT) method. This method

has been used in the calculation of various strong and electro–magnetic nuclear re-

actions (see for example (Efros et al., 1997b,c,a, 2000; Barnea et al., 2001a; Bacca

et al., 2002, 2004)). In this thesis the LIT method is applied for weak reactions on

nuclei (Gazit and Barnea, 2004, 2007b,a,c). Though used here for inclusive reactions,

it has been applied for exclusive reactions as well (Quaglioni et al., 2004).

35
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4.1 Integral Transformations

Using integral transform transforms the response function to a continuous function,

which depends on a parameter σ, using an analytic kernel function K(ω, σ). The

integral transform is a functional of the response function, defined as:

I[R(ω, ~q)](σ, ~q) =

∫ ∞

0−
dωR(ω, ~q)K(ω, σ) (4.2)

The integration starts from 0− to include every possible scattering, including elastic

channels. Finite transform and its existence depends on the high energy (high ω)

behavior of both the response function and the kernel, and should be checked for

each case.

The advantage in using an integral transform is easily viewed when inserting the

definition of the response function, Eq. (4.1), in Eq. (4.2). The integration over the

energy conserving δ function is trivial,

I(σ, ~q) =

∫∑

f

〈
i|Ô†

1(~q)|f
〉〈
f |Ô2(~q)|i

〉
K(Ef −Ei, σ).

As K(Ef−Ei, σ) is a number, one can insert it to the matrix element. Using then the

fact that the states |f
〉

are eigenstates of the Hamiltonian, Ĥ, namely Ĥ|f
〉

= Ef |f
〉
,

yields the expression

I(σ, ~q) =

∫∑

f

〈
i|Ô†

1(~q)K(Ĥ −Ei, σ)|f
〉〈
f |Ô2(~q)|i

〉
.

One notes that in this expression the final state appears only through the projec-

tion operator |f
〉〈
f |. The hermiticity of the Hamiltonian implies closure:

∫∑
f |f
〉〈
f | =

1. Thus,

I(σ, ~q) =
〈
i|Ô†

1(~q)K(Ĥ − Ei, σ)Ô2(~q)|i
〉
. (4.3)

There is no doubt that the use of integral transforms simplifies the calculation,

as it depends only on the ground state properties. However, this is merely a disguise

as the kernel operator depends explicitly on the Hamiltonian Ĥ. The latter acts on
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Ô2(~q)|i
〉
, which is not an eigenstate, hence depends on all basis states. An additional

unresolved question is the inversion of the transform.

Obviously, an intelligent choice of the kernel can solve both these problems. Nev-

ertheless, the solution can never be perfect. A choice of a broad kernel smears out

narrower structures, which when inverting the transform results in numerical insta-

bility. Choosing narrow kernel leads back to the solution of the continuum state

problem.

In the literature, different kernels have been proposed. Among which is the Laplace

kernel K(ω, σ) = e−σω. The calculation of the transform with this kernel is relatively

easy, as it can be presented as propagation in imaginary time. This fact has made

the Laplace kernel appropriate for Quantum Monte Carlo calculation (e.g. (Carlson

and Schiavilla, 1994)). The disadvantage is the fact that an inversion of Laplace

transformation demands an analytic continuation of the integral transform, which is

usually unavailable.

In view of the needed narrowness of an optimal kernel, it is valuable to use a

kernel which depends on an additional parameter σW , with the following properties:

• K(ω, σ; σW ) = K(ω − σ; σW ).

• limσW →0K(ω − σ; σW ) = δ(ω − σ).

The advantages are clear. σW is chosen in view of the anticipated width of the reaction

cross-section. Photodissociation and neutrino scattering reactions are dominated by

giant resonance excitations, with a typical width of 10− 30 MeV. Thus a reasonable

choice is σW ≈ 10 MeV.

Possible examples for kernels which satisfy the aforementioned properties are the

lorentzian and the gaussian. The Lorentzian turns to be simple to calculate, hence

attractive.

4.2 Integral Transform with a Lorentzian Kernel

A Lorentzian kernel is defined as K(ω, σ) = 1
(ω−σR)+σ2

I

, where σ = −σR + iσI is a

complex continuous parameter, with a real part indicating the transform variable and
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its imaginary part indicates the Lorentzian width. The Lorentz Integral Transform

(LIT) is defined as,

L(σ, ~q) =

∫ ∞

0−
dω

R(ω, ~q)

(ω − σR) + σ2
I

. (4.4)

Putting the LIT kernel definition in Eq. (4.3) yields:

L(σ, ~q) =
〈
i
∣∣Ô†

1(~q)
1

Ĥ − E0 + σ∗
1

Ĥ − E0 + σ
Ô2(~q)

∣∣i
〉
, (4.5)

which has the form of an internal product:

L(σ, ~q) =
〈
Ψ̃1

∣∣Ψ̃2

〉
(4.6)

with,
∣∣Ψ̃i

〉
≡ 1

Ĥ − E0 + σ
Ôi(~q)

∣∣i
〉
, for i = 1, 2. (4.7)

This important result implies that the evaluation of the LIT requires the solution

of the following equation:

(Ĥ −E0 + σ)
∣∣Ψ̃i(σ)〉 = Ôi

∣∣i〉. (4.8)

These equations have several appealing properties:

Uniqueness and existence of the solution The hermiticity of the Hamiltonian

implies real energies, hence Ef −E0 − σ 6= 0 for σI 6= 0. Thus the homogenous

equation has only the trivial solution. As a result, there could only be a unique

solution dictated by the source term in the right–hand–side of the equation, and

the boundary conditions are dictated by it. The source term has a finite norm,

i.e. the boundary conditions of a bound state problem. This means that the

inner product of Eq. (4.6) is finite and thus the transform exists, and unique.

LIT is Schrödinger–like problem In view of the bound state boundary condi-

tions, Eq. (4.8) is a Schrödinger equation with a source term, thus can be

solved using the variety of methods available for such problems. One of these

methods is the Effective Interaction in the Hyperspherical Harmonics (EIHH)
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discussed in the following chapter.

LIT is a Green–function–like matrix element It is easy to rewrite Eq. (4.5) as,

L(σ, ~q) =
1

σI
Im

{〈
i
∣∣Ô†

1(~q)
1

Ĥ − E0 + σ
Ô2(~q)

∣∣i
〉}

. (4.9)

Thus, a matrix element of a green–function. Several methods exist to calcu-

late such a matrix–element, one numerically effective method is the Lanczos

algorithm, described in the following subsection.

The Lorentz integral transform clearly simplifies calculation of response functions.

The method avoids the difficulty of calculating continuum wave functions. Instead

a bound–state like equation has to be solved, enabling the theoretical evaluation of

previously unreachable reactions.

4.2.1 Calculation of LIT using the Lanczos Algorithm

In this subsection an efficient algorithm for the calculation of the LIT presentation

of Eq. (4.9) is reviewed, based on the Lanczos Algorithem (Lanczos, 1950). First, let

us focus on the Ô1(~q) = Ô2(~q) = Ô case.

The Lanczos basis {
∣∣ϕn

〉
;n ≥ 0} is an orthonormal set of states starting with a

known state
∣∣ϕ0

〉
. The rest of the basis can be defined recursively,

bn+1

∣∣ϕn+1

〉
= Ĥ

∣∣ϕn

〉
− an

∣∣ϕn

〉
− bn

∣∣ϕn−1

〉
, for n ≥ 1, (4.10)

With the condition b0 = 0. From Eq. (4.10) it is trivial that the Lanczos coefficients

an and bn are given by:

an =
〈
ϕn

∣∣Ĥ
∣∣ϕn

〉
and bn =

〈
ϕn

∣∣Ĥ
∣∣ϕn−1

〉
. (4.11)

Choosing the Lanczos pivot as

∣∣ϕ0

〉
=

Ô
∣∣i
〉

√〈
i
∣∣Ô†Ô

∣∣i
〉 , (4.12)
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allows to write the LIT as

L(σ) =
1

σI

〈
i
∣∣Ô†Ô

∣∣i
〉
Im{x00(E0 − σ)}, (4.13)

Where

xn0(z) ≡
〈
ϕn

∣∣ 1

Ĥ − z
∣∣ϕ0

〉
. (4.14)

In order to calculate this , one uses the identity
(
Ĥ − z

)(
Ĥ − z

)−1
= I, which leads

to linear set of equations,

∑

n

(
Ĥ − z

)
mn
xn0(z) = δm0. (4.15)

Applying Kramers rule, one can express xn0(z) as continuous fractions, in particular

x00(z) =
1

(z − a0)− b21

(z−a1)− b2
2

(z−a2)−
b2
3

(z−a3)−...

. (4.16)

In typical examples a few hundreds of Lanczos coefficients are sufficient to reach

convergence in the LIT.

After defining xn0(z), a formulation of a LIT calculation with Ô1(~q) 6= Ô2(~q) is

available. In this formulation, the Lanczos pivot defined as
∣∣ϕ0

〉
=

Ô2

∣∣i
〉

r〈
i

∣∣Ô†
2Ô2

∣∣i
〉 . One

inserts an identity operator
∑

i

∣∣ϕi

〉〈
ϕi

∣∣ to get:

L(σ, ~q) =

√〈
i
∣∣Ô†

2Ô2

∣∣i
〉

σI

Im
∑

n

〈
i
∣∣Ô†

1(~q)
∣∣ϕn

〉
xn0(z). (4.17)

4.3 Inversion of the LIT

The success of an integral transform highly relies on the existence of a stable inversion.

An analytic inversion for the Lorentz transform does not exist.

One can observe the problem in inverting the LIT in the following reason. Let us
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perform a Fourier transform on Eq. (4.4). The r.h.s of that equation is a convolution

of lorentzian and the response function. Bearing in mind that the fourier transform

of a lorentzian is exponential decay, one gets

F [L(σ, ~q)](k) =
π

σI

e−σI |k|F [R(ω, ~q)](k). (4.18)

As a result, high energy (short wavelengths) are suppressed when performing the LIT.

Clearly, this fact creates instability in the inversion, which enhances short wavelength

oscillations.

However, a hope lies in the fact that mathematically the inversion is unique.

Moreover, there are several numerical approaches for the inversion in the literature,

which have provided stable and successful results. The method used in this scope

is expanding the wanted inversion (i.e. the nuclear response function) in a set of

functions fn(ω),

R(ω, ~q) =

N∑

n=1

cn(~q)fn(ω). (4.19)

Since the transform is linear, it is obvious that the LIT of Eq. (4.19) L(σ, ~q) =
∑N

n=1 cn(~q)Ln(σ), where Ln(σ) is the known LIT of {fn(ω)}. One obtains the coeffi-

cients cn by solving the minimal squares problem, on a grid {σi
R, i = 1, . . . , K}:

K∑

k=1

∣∣∣∣∣L(σk, ~q)−
N∑

n=1

cn(~q)Ln(σk)

∣∣∣∣∣

2

= min (4.20)

The problem of the inversion is hence reduced to the solution of a set of linear equa-

tions. It has been shown (Efros et al., 1999; Efros, 1999) that fitting on a grid such

that K ≫ N regularizes the inversion, thus solves the stability problem.

In order to increase both accuracy and control over the inversion, one can take some

important measures:

Physical considerations Often there are physical considerations on the asymptotic

and threshold of the response function. The choice of a physical shape for fn

can diminishes the number of needed expansion functions, while increasing the



Chapter 4. Lorentz Integral Transform Method 42

stability and accuracy of the inversion. Such a set of functions is:

fn(ω) = ωn0e−
ω

n∆E . (4.21)

This choice uses the fact that the threshold behavior is a power law, with

n0 ∼ 1.5, and that the high energy tail decays exponentially with characteristic

width ∆E.

Sum Rules Integration over the entirety of the response with a specific weight func-

tion depends on ground state properties. Thus, the inversion can be checked

for consistency. In Chap. 6 an extensive discussion on the subject of sum rules

in photodisociation processes is given.

Stability with respect to σI The LIT can be calculated for various widths σI . A

stability of the inversion with respect to σI shows that there are no hidden

structures of width less than σI .
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The nuclear problem regards the properties of an A–body quantum mechanical non–

relativistic system subjected to strong correlations. As a result, the calculation of

exact solutions to the problem is a difficult task, demanding elaborate theoretical and

numerical methods. In order to solve the LIT equations, one needs a good knowledge

of the ground state wave function, and the ability to calculate matrix elements.

In the non–relativistic approximation the nuclear Hamiltonian,

H =

A∑

i=1

p2
i

2MN
+

A∑

i<j=1

V (2)(~rij) +

A∑

i<j<k=1

V (3)(~ri, ~rj, ~rk), (5.1)

includes not only a nucleon–nucleon (NN) interaction V (2)(~rij), which depends on

the distance between the nucleons ~rij ≡ ~ri − ~rj, but also three nucleon force (3NF)

V (3)(~ri, ~rj, ~rk). The need in 3NF is observed already in the trinuclei binding energies,

where state of the art NN potentials lead to underbindings of about 10%.

In this chapter I will present the use of hyperspherical coordinates and functions

for the evaluation of nuclear wave functions and matrix elements. The effective in-

teraction in hyperspherical harmonics (EIHH) approach is introduced at the end of

the chapter.

5.1 Few–Body problems in terms of the Hyper-

spherical Harmonics

The most simple A–body problem is the 2–body problem. One of the conclusions from

the solution of the 2–body problem is that a natural selection for representing the

problem is to separate the center of mass movement and the relative motion among

43
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the bodies. In the case of an isolated system the center of mass movement is trivial

and does not affect the system. The center of mass coordinate, for a system of A equal

masses is ~Rcm = 1
A

∑A
i=1 ~ri. The internal coordinates are defined as ~r ′i = ~ri − ~Rcm.

This way, when working in the center of mass frame,
∑

i ~r
′
i = 0.

It is clear that a good choice of internal coordinates can help representing the

nuclear problem. The Jacobi coordinates provide such a choice, as the logic of their

construction is the separation of a subset of particles from the center of mass of the

other particles.

For a one body operator, one chooses

~ηk−1 =

√
k − 1

k

(
~rk −

1

k − 1

k−1∑

i=1

~ri

)
; k = 2, . . . , A. (5.2)

In this set, the last Jacobi coordinate is proportional to the coordinate of the last

particle, ~ηA−1 =
√

A
A−1

~r ′A.

For a two–body operator, one chooses

~ηk =

√
A− k

A + 1− k

(
~rk −

1

A− k
A∑

i=k+1

~ri

)
; k = 1, . . . , A− 1. (5.3)

In this set, the last Jacobi coordinate is proportional to the relative distance between

the two last coordinates, ~ηA−1 =
√

1
2

(
~rA−1 − ~rA

)
.

As a result, the matrix element depends only on the last Jacobi coordinate. One

can use the invariance of the matrix element to the other Jacobi coordinates by

defining a generalization of the spherical coordinates, the hyperspherical coordinates.

5.1.1 Hyperspherical Coordinates

The hyper–radius of a k–body internal system is defined as (Efros, 1972),

ρ2
k =

k∑

i=1

η2
i =

1

k

k+1∑

i<j

(~ri − ~rj)
2. (5.4)
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From this definition it is clear that ρ2
k = ρ2

k−1+η
2
k, so that (ρk−1, ηk, ρk) is a pythagorean

triplet, with a hyper–angle ϕk ∈
[
0, π

2

]
:

ρk−1 = ρk cosϕk, (5.5)

ηk = ρk sinϕk.

With this, the A − 1 internal degrees of freedom are described by one hyper–radius

ρA−1, A− 2 hyper–angles ϕ(A−2) ≡ {ϕ2, . . . , ϕA−1}, and 2(A− 1) degrees of freedom

related to the solid angles of the Jacobi coordinates Ω(A−1) ≡ {η̂1, . . . , η̂A−1}.
The volume element related to the internal A–body system is (Barnea, 1997)

dV3(A−1) = ρ3A−4
A−1 ρA−1dS3A−4 (5.6)

= ρ3A−4
A−1 ρA−1 sin2(ϕA−1) cos3A−7(ϕA−1)dϕA−1dη̂A−1dS3A−7,

where dSN is a hyper–sphere surface element in N dimensions.

One still has to write the kinetic energy operator using hyperspherical coordinates.

It is again useful to start with an analogy to the 2–body problem, where the Laplace

operator for one relative coordinate is

△~η1 = △η1 −
l̂21
η2

1

(5.7)

here the radial part is △η1 = 1
η2
1

∂
∂η1

(
η2

1
∂

∂η1

)
. For a set of A−1 Jacobi coordinates, the

Laplace operator is a sum △(A−1) =
∑A−1

i=1 △~ηi
. After a transformation to ρA−1, ϕA,

one gets (Efros, 1972):

△(A−1) = △ρA−1
− K̂2

A−1

ρ2
A−1

(5.8)

with the hyper–radial part

△ρA−1
=

∂2

∂ρ2
A−1

+
3(A− 1)− 1

ρA−1

∂

∂ρA−1
. (5.9)

The grand–angular–momentum operator K̂A−1 is built recursively, starting with K̂1 ≡
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l̂1. The construction is done by choosing two subsets of Jacobi coordinates, and using

Eq. (5.5). If one chooses A − 2 coordinates as a subset, the recurrence relation is

△(A−1) = △(A−2) +△~ηA−1
. Putting Eqs. (5.7,5.8) in this relation, one gets:

K̂A−1 = − ∂2

∂ϕ2
A−1

+
3[(A− 1)− 2]− [3(A− 1)− 2] cos 2ϕA−1

sin 2ϕA−1

∂

∂ϕA−1

+ (5.10)

+
K̂2

A−2

cos2 ϕA−1

+
l̂2A−1

sin2 ϕA−1

If we define the internal angular momentum operator ~̂LA−1 =
∑A−1

i=1
~̂li, it is clear

that the operators K̂A−1, l̂A−1, K̂A−2, L̂
2
A−1 and ~̂LZ

A−1 are commutative. Thus, an

eigenstate of the Laplacian can be labeled by the quantum numbers KA−1, . . . , K1,

l1, . . . , lA−1, LA−1, . . . , L1 and MA−1.

5.1.2 The Hyperspherical Harmonics Functions

The hyperspherical harmonics functions are the eigen–functions of the Laplace op-

erator. As explained in the previous section the operator is built recursively, a fact

which reflects upon the construction of its eigen–functions.

In general, when treating the nuclear problem as A identical particles (i.e. when

identifying protons and neutrons in the isospin symmetry) the internal wave func-

tions belong to an irreducible representation (irrep) of the symmetric group SA.

This simplifies the calculation of matrix elements, as for a generic N–body opera-

tor Ô(N) =
∑A

i1<i2<...<iN=1 Ôi1,i2,...,iN the problem reduces to a matrix element of an

operator acting on one N–body subsystem
〈
Ψ
∣∣∣Ô(N)

∣∣∣Ψ′〉 =
(

A
N

)〈
Ψ
∣∣∣ÔA−N+1,...,A

∣∣∣Ψ′〉.
The relevant cases of one–, two–, and three–body operators are written explicitly as,

〈
Ψ
∣∣∣Ô(1)

∣∣∣Ψ′〉 = A
〈
Ψ
∣∣∣ÔA

∣∣∣Ψ′〉

〈
Ψ
∣∣O(2)

∣∣Ψ′〉 =
A(A− 1)

2

〈
Ψ |OA,A−1|Ψ′〉

〈
Ψ
∣∣∣Ô(3)

∣∣∣Ψ′〉 =
A(A− 1)(A− 2)

6

〈
Ψ
∣∣∣ÔA,A−1,A−2

∣∣∣Ψ′〉
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In order to construct a hyperspherical function with such a property, one starts

in the 2–body problem. In this case there exists one Jacobi coordinate, and the

hyper–spherical formalism coincides with the usual spherical formalism, thus the

eigen–functions are the spherical harmonics, Yl1m1(η̂1). The latter also belongs to

a well defined irrep of the symmetry group S2. Adding an additional particle is done

by the usual coupling of angular momenta,

ΦL2,M2;l1,l2(Ω(2)) =
∑

m1,m2
(l1m1l2m2|L2,M2)Yl1m1(η̂1)Yl2m2(η̂2). This does not ex-

haust the eigen–function of the 3–body grand–angular momentum K̂2, as there is an

additional dependence on the hyper–angle coordinate ϕ2. The resulting differential

equation is separable, bringing to the hyperspherical function for three particles,

YK2,L2,M2,l1,l2(Ω(2), ϕ2) = ΨK2;l1l2(ϕ2)ΦL2,M2;l1,l2. (5.11)

By a linear combination of these functions with common K2, L2,M2 one can construct

basis functions that belong to well defined irreps of the orthogonal group O(2). Con-

sequently, the hyperspherical function depends on the Gel’fand–Zetlin (GZ) symbol

Λ2, and a multiplicity label α2. So the hyperspherical function is labeled by five good

quantum numbers, Y[K2](Ω(2), ϕ2), with [K2] ≡ K2, L2,M2,Λ2, α2.

As mentioned, the construction of the hyper–spherical function for the A–body,

A−1 Jacobi coordinates, problem is done recursively. Let us assume the construction

led to Y[KA−2](Ω(A−2), ϕ(A−2)) with [KA−2] ≡ KA−2, LA−2,MA−2, KA−3, LA−3, lA−2,ΛA−3, αA−3.

By coupling this to YlA−1mA−1
(η̂A−1) one gets

ΦL2,M2;l1,l2(Ω(2)) = (5.12)

=
∑

MA−2,mA−1

(LA−2MA−2lA−1mA−1|LA−1,MA−1)Y[KA−2](Ω(A−2), ϕ(A−2))YlA−1mA−1
(η̂A−1).

Next, one constructs the orthonormalized eigen–functions of the grand angular mo-

mentum operator K̂2
A−1 (Efros, 1972):

ΨKA−1;lA−1KA−2
(ϕA−1) = (5.13)

NA−1(KA−1; lA−1KA−2)(sinϕA−1)
lA−1(cosϕA−1)

KA−2P
(lA−1+ 1

2
,KA−2+

3A−8
2

)
nA−1 (cos 2ϕA−1),
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where P
(α,β)
n are the Jacobi polynomials, nA−1 = KA−1−KA−2−lA−1

2
, and the normaliza-

tion factor is (Efros, 1972):

NA−1(KA−1; lA−1KA−2) =

√√√√(2KA−1 + 3A− 5)nA−1!Γ
(
nA−1 + KA−2 + lA−1 + 3A−5

2

)

Γ
(
nA−1 + lA−1 + 3

2

)
Γ
(
nA−1 + KA−2 + 3A−6

2

) .

(5.14)

The function Ψ is an eigen–function of K̂2
A−1 with an eigen–valueKA−1(KA−1+3A−5).

By construction, KA−1 − (KA−2 + lA−1) ≥ 0, and even. As a result nA−1 is a non–

negative integer.

The result of the complete separation between hyper–angular coordinate and the

Jacobi coordinates, means that one can construct the hyper–spherical function

Y[KA−1](Ω(A−1), ϕ(A−1)) = ΨKA−1;lA−1KA−2
(ϕA−1)ΦLA−1,MA−1;[KA−2]lA−1

(Ω(A−2)ϕ(A−2))

(5.15)

where [KA−1] stands forKA−1, LA−1,MA−1, KA−2, LA−2, lA−1,ΛA−2, αA−2. These func-

tions are a complete set, orthonormal in each of the quantum numbers.

However, using this construction, the hyperspherical harmonics functions still do

not possess the symmetry property for quantum symmetry, i.e. they do not belong to

an irrep of the symmetry group SA. For this purpose we use an algorithm developed

by Barnea and Novoselsky (1997), which uses an extension of the Novoselsky, Katriel,

Gilmore (NKG) algorithm (Novoselsky et al., 1988), and yields an A particle state

belonging to well defined irreps of both the orthogonal and the symmetry groups.

The process starts with a part overlooked in the previous explanation, the recursive

construction of the hyperspherical functions as an irrep of O(A−1). This step is done

by understanding that the GZ states can be expressed recursively ΛN = [λNΛN−1],

where λN is an irrep of O(N) containing the irreps represented by the GZ state ΛN−1.

Using this relation, one gets

∣∣KNLNMNΛNαN

〉
= (5.16)

=
∑

KN−1LN−1αN−1lN

[(KN−1LN−1λN−1αN−1; lN)KNLN |}KNLNλN−1αN−1]×

×
∣∣(KN−1LN−1ΛN−1αN−1; lN)KNLN )KNLNMN

〉
.
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The transformation coefficients connect N − 1 coordinates with the N th coordinate,

thus called the hyperspherical orthogonal coefficients of fractional parentage (hsocfps).

in Barnea and Novoselsky (1997) it is shown that the hsocfps depend only on theO(N)

and O(N − 1) irreps, and are independent of MN .

The next step is the reduction of the kinematical symmetry to the permutation

symmetry, i.e. O(A − 1) → SA in the case of A identical particles. The NKG

algorithm is based on the recursive construction of a state of an irrep of SN from

a state of an irrep of SN−1. The algorithm uses the transposition representation

of a permutation, by which any contained permutation is represented as a subset

of the transpositions. By construction, a state with N particles is characterized

by the symmetric group irrep that correspond to the group–subgroup chain S1 ⊂
S2 ⊂ . . . ⊂ SN , represented by Young diagrams Γ1, . . . , ΓN . For short, one uses the

Yamanouchi symbol YN = [ΓNΓN−1 . . .Γ1] = [ΓNYN−1]. The symmetry adaptation

of the ON−1 symmetry to include the permutation symmetry has its price, letting

go of the kinematical symmetry chain of group–subgroup ΛN−1 and holding only

the ON−1 representation invariant, i.e. λN−1. Also, a possibility of degeneracy of

the permutation states in the kinematical group, suggests an additional label βN .

This is a kind of parentage transformation, thus its coefficients are called orthogonal

coefficients of fractional parentage (ocfps).

Summing this up, we have the recursive relation:

∣∣KA−1LA−1MA−1λA−1αA−1ΓAYA−1βA

〉
= (5.17)

=
∑

λA−2βA−1

[(λA−2ΓA−1βA−1)λA−1|}λA−1ΓAβA]×

×
∑

KA−2LA−2αA−2lA−1

[(KA−2LA−2λA−2αA−2; lA−1)KA−1LA−1|}KA−1LA−1λA−1αA−1]×

×
∣∣(KA−2LA−2λA−2αA−2ΓA−1YA−2βA−1; lA−1)KA−1LA−1MA−1λA−1

〉
.

Where of course,

〈
Ω
∣∣KA−1LA−1MA−1λA−1αA−1ΓAYA−1βA

〉
= YKA−1LA−1MA−1λA−1ΓAYA−1αK

A
(Ω), (5.18)
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with Ω = (Ω(A−1), ϕ(A−1)) for the angular coordinates, and αK
A = (αA−1, βA) is the

multiplicity label.

5.1.3 The Hyperspherical Formalism with Internal Degrees

of Freedom

Pauli principle suggests that a set of identical particles would have good symmetry

properties with respect not only to the configurational exchange of two particles, but

to all the degrees of freedom of the particle. In the case of nucleons, this means that

the wave function of the A–body nucleus can be written as,

Φ(~η1 . . . ~ηN , s1 . . . sA, t1 . . . tA) =
∑

[K]ν

R[K];ν(ρ)H[K](Ω, s1 . . . sA, t1 . . . tA). (5.19)

R[K];ν(ρ) are solutions to the hyper–radial equation, with quantum number ν, and

[K] ≡ JA, J
z
A, [KA], SA, TA, T

z
A, α

ST
A . The function H[K](Ω; s1 . . . sA; t1 . . . tA) possesses

the correct symmetry property for a set of fermions, i.e. antisymmetric in any ex-

change of particles. The nuclear states are described by total isospin, T , and total

angular momentum J . The latter is the sum of the total spin S and orbital angular

momentum L.

It is clear that in order to couple the hyperspherical harmonics to a spin–isospin

state, one needs to create the latter as a representation of the permutation group.

This is done, once again, by means of the NKG algorithm. One uses spin–isospin

coefficients of fractional parentage (stcfps), to build the state

χSASz
A

TAT z
A

ΓAYA−1αST
A

(s1, . . . , sA; t1, . . . , tA) =
∑

SA−1TA−1αTS
A−1

(5.20)

[(SA−1; sA)SA(TA−1; tA)TAΓA−1α
TS
A−1|}SATAΓAα

ST
A ]×

[χSA−1TA−1ΓA−1YA−2αST
A−1
⊗ sAtA]SASz

ATAT z
A ,

where SA (TA) is the total spin (isospin), with projection Sz
A (T z

A), and the label αST
A

is needed to remove the degeneracy.
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Consequently, the function H[K](Ω; s1, . . . , sA; t1, . . . , tA) =
〈
Ω, s1 . . . sA, t1 . . . tA |

[K]
〉

is just,

H[K](Ω; s1, . . . , sA; t1, . . . , tA) =
∑

YA−1

ΛΓA,YA−1√
| ΓA |

× (5.21)

×
[
YKA−1LA−1λA−1ΓAYA−1αK

N
(Ω)⊗ χSATAT z

AΓ̃AỸA−1αST
A

(s1, . . . , sA; t1, . . . , tA)
]JA

Jz
A

,

where ΛΓA,YA−1
are phase factors, which in the case of fermionic system are positive

(negative) when the number of boxes in the diagram ΓA below the row of the Ath

particle is odd (even). | ΓA | is the dimension of the young diagram. This function

couples the total spin and orbital angular momentum to angular momentum JA, with

projection Jz
A, i.e. an LS scheme. However, in microscopic problems, where the forces

are not necessarily central, a JJ coupling scheme is usually preferred.

In the JJ coupling scheme, one first couples the spin and angular momentum of

the last particle sA = 1
2

and lA to jA, which is then coupled to the total angular

momentum JA−1 of the residual A − 1 particles, given by the coupling of SA−1 and

LA−2. Finally, the hyperspherical spin–isospin basis state is written as

|[K]〉(1) =
∑

YA−1

ΛΓA,YA−1√
| ΓA |

∑

λA−2βλ

A−1

[(λA−2ΓA−1β
λ

A−1)λA−1|}λA−1ΓAβ
λ

A]×

∑

KA−2LA−2βK
N−1lA−1

[(KA−2LA−2λA−2β
K
A−2; lA−1)KA−1LA−1|}KA−1LA−1λA−1β

K
A−1]×

∑

SA−1TA−1αST
A−1

[(SA−1; sA)SA(TA−1; tA)TAΓA−1α
ST
A−1|}SATAΓAα

ST
A ]× (5.22)

∑

jAJA−1

√
(2SA + 1)(2LA−1 + 1)(2jA + 1)(2JA−1 + 1)





SA−1 sA SA

LA−2 lA−1 LA−1

JA−1 jA JA




×

|(TA−1, tA)TAT
z
A〉×

|
(
(SA−1;KA−2LA−2λA−2β

K
A−2ΓA−1YA−2β

λ

A−1)JA−1; (sA; lA−1)jA
)
JAJ

z
A〉

This is relevant mainly when the choice of Jacobi coordinates is according to Eq. (5.2),
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in which the last coordinate is proportional to the last particle coordinate.

A different JJ coupling scheme is used when the choice of Jacobi coordinates

is according to Eq. (5.3), i.e. the last coordinate is proportional to the relative

coordinate of the last two particles. In this scheme, one couples the last two particles

total spin ~̂s = ~̂sA + ~̂sA−1 and orbital angular momentum ~̂l = ~̂lA + ~̂lA−1 to a total

angular momentum ĵ. The latter is then coupled to the total angular momentum of

the residual A− 2 particle system, which is the coupling of its spin SA−2 and orbital

angular momentum LA−3. This leads to the following representation of the basis

state,

|[K]〉(2) =
∑

YA−1YA−2

ΛΓA,YA−1√
| ΓA |

ΛΓA−1,YA−2√
| ΓA−1 |

∑

λA−2βλ

A−1

[(λA−2ΓA−1β
λ

A−1)λA−1|}λA−1ΓAβ
λ

A]×

∑

KA−2LA−2βK
N−1l

[(KA−2LA−2λA−2β
K
A−2; l)KA−1LA−1|}KA−1LA−1λA−1β

K
A−1]×

∑

SA−1TA−1αST
A−1

[(SA−1; sA)SA(TA−1; tA)TAΓA−1α
ST
A−1|}SATAΓAα

ST
A ]×

∑

SA−2TA−2αST
A−2st

[(SA−2; s)SA−1(TA−2; t)TA−1ΓA−2α
ST
A−2|}SA−2TA−2ΓA−2α

ST
A−2]× (5.23)

∑

jstJA−2

(−)SA−2+SA

√
(2SA−1 + 1)(2s+ 1)

{
SA−2

1
2

SA−1

1
2

SA s

}
×

(−)TA−2+TA

√
(2TA−1 + 1)(2t+ 1)

{
TA−2

1
2

TA−1

1
2

TA t

}
×

√
(2SA + 1)(2LA−1 + 1)(2jA + 1)(2JA−1 + 1)





SA−2 s SA

LA−2 l LA−1

JA−2 j JA




×

|(TA−2, t)TAT
z
A〉×

|
(
(SA−2;KA−2LA−2λA−2β

K
A−2ΓA−1YA−2β

λ

A−1)JA−2; (s; l)j
)
JAJ

z
A〉

With these results, one can now proceed to the calculation of matrix elements.
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5.1.4 Matrix Elements within the Hyperspherical Formalism

In nuclear problems one has to consider matrix elements of operators of pure isospin

T , and its projection Tz, and spin–orbital coupling to a total angular momentum J
with projection M. This operator can act either on a single nucleon, or more. In

the general case of an operator acting on N nucleons, one considers the following

operator:

ÔJM;T T z

(N) =
A∑

i1<i2<...<iN=1

ÔJM(~ri1, . . . , ~riN ; si1, . . . , siN )ÔT T z(ti1 , . . . , tiN ) (5.24)

In the case of N = 1 or 2, i.e. one and two body matrix elements, one can use hyper–

spherical wave functions of Eqs. (5.22, 5.23), which lead to explicit dependence on one

Jacobi coordinate. The advantage is that usually one can separate the hyper–radial

part from the hyper angular part, i.e.

ÔJM = RJ (LηA−1)
ˆ̃OJM( ˆηA−1, spins) (5.25)

where L =
√

2 for two–body operator, and L =
√

A
A−1

for one–body operator. The

matrix element of the scalar operator RJ (LηA−1) includes two integrations. The first

integration is over the hyper–angle,

MJ (ρ) =
〈
KA−2l;KA−1 | RJ (Lρ sinϕA) | KA−2l

′;K ′
A−1

〉
= (5.26)

N (KA−1; lKA−2)N (K ′
A−1; l

′KA−2)×

×
∫ π

2

0

dϕ(sinϕ)α+α′

(cosϕ)β−1P (α,β)
n (cos 2ϕ)RJ (Lρ sinϕA)P (α′,β)

n (cos 2ϕ)

where α = l+ 1
2
, α′ = l′ + 1

2
, and β = KA−2 + 3A−8

2
(see Eq. (5.13) for the other nota-

tions). This integration can be performed analytically by expanding the interaction

to power series (Barnea, 1997). Due to the orthonormality of the Jacobi polynomials,

this integration includes a finite number of elements.

One now integrates over the hyperradius, by expanding the hyperradial part of
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the wave function (cf. Eq. (5.19)) as,

R[K];ν(ρ) =
∑

C [K];ν
nρ

φ(a,b)
nρ

(ρ
b

)
. (5.27)

Here, φ
(a,b)
nρ (x) are the ortho–normalized generalized Laguerre polynomials of order nρ

and parameters a, b. The parameter b is a length scale for the integration. Explicitly,

we take

φ(a,b)
n (x) =

√
n!

(n+ a)!
b−

3(A−1)
2 x

a−(3A−4)
2 La

n(x)e−
x
2 (5.28)

As a result, the hyperradial matrix element is written as

〈
R[K];ν(ρ) | MJ (ρ) | R[K]′;ν′(ρ)

〉
=
∑

C
[K]′;ν′

n′
ρ

C [K];ν
nρ

∫ ∞

0

dρρ3A−4φ(a,b)
n

(ρ
b

)
MJ (ρ)φ

(a′,b)
n′

(ρ
b

)

(5.29)

This integration is done numerically, using Gauss–Laguerre quadrature.

In the current work, we confront also three–body matrix elements, which include

the coupling of two Jacobi coordinates (Barnea et al., 2004).

5.2 Effective Interaction with the Hyperspherical

Harmonics

The Hyperspherical Harmonics expansion has the correct asymptotic behavior, thus

provides a promising channel to the solution of the nuclear problem defined by the

Hamiltonian in Eq. (5.1). Two of the advantages in using this expansion are the

removal of the center of mass coordinate; and the localization of the quantum de-

scription, provided by the explicit dependence in the hyperradius, which holds within

information regarding the entire nucleus.

Alas, in order to reach convergence in the expansion of the nuclear wave function

one has to expand up to very high grand angular momentum K. In order to cope

with this disadvantage it was proposed to replace the bare potential with an effective

interaction, which truncates the model space. The concept of effective interaction has

been used traditionally in the framework of harmonic oscillator basis. However, lately



Chapter 5. Nuclear Wave functions 55

(Barnea et al., 2000, 2001b, 2004) it was extended to the hyperspherical harmonics

basis. This method, the Effective Interaction with the Hyperspherical Harmonics

(EIHH), has been shown to give excellent results both in comparison to other few–

body methods, and in confronting previously unreachable nuclear reactions. In this

section I will present a brief overview of the method, as used for the calculations

shown in the following chapters.

5.2.1 Lee–Suzuki Approach for Effective Interactions

The effective interactions are projections of the bare interactions to a subspace of the

entire model space. Defining P as the projection operator onto the model space, then

Q = 1 − P is the projection operator onto the complementary space. By definition,

the effective interaction leaves unchanged the low lying eigen-energies.

The first step in the construction of the effective interaction is choosing the model

space. It is helpful to note that the hyper–radius, by definition, limits the inter–

nucleon distance. This fact makes it possible to choose the model space as the product

of the entire hyper–radial space and the set of HH basis functions with K ≤ Kmax.

It is clear that Veff → V as Kmax →∞, and the same follows for the eigen–energies

and states of the Hamiltonian.

In order to continue, one method is to use the Lee-Suzuki procedure (Suzuki and

Lee, 1980, 1982, 1983), in which one uses a similarity transformation X. The effective

Hamiltonian is given by

Heff = PX−1HXP. (5.30)

The effective interaction acts only in the P–space. The operator X = eω re-projects

the information contained in the Q–space back to the model space, i.e. ω = QωP

(which also leads to ω2 = ω3 = . . . = 0, and thus X = 1 +ω, and X−1 = 1−ω). One

can summarize this method in the following way (we use the notation OAB ≡ AOB)
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(Bacca, 2004):

H =

(
HPP HQP

HPQ HQQ

)
−→ H̃ = X−1HX =

(
H̃PP 0

H̃PQ H̃QQ

)
−→ Heff = H̃PP .

(5.31)

The implicit condition that ω has to fulfill H̃QP = 0 can be rearranged to the equation:

Q(H + [H, ω]− ωHω)P = 0. (5.32)

The strength of the effective interaction approach is that the low energy solutions

to the original problem can be exhausted from the eigen–vectors of the effective

Hamiltonian, Heff , which by construction are in the P space. The theorem states:

let ǫ̃P be the eigen–vectors of this subspace, then ǫP ≡ Xǫ̃P are eigen–vectors of the

true Hamiltonian with the same eigen–value.

In order to prove this theorem, let | Ψ̃µ

〉
∈ ǫ̃P , i.e, Heff | Ψ̃µ

〉
= ǫµ | Ψ̃µ

〉
and

P | Ψ̃µ

〉
=| Ψ̃µ

〉
. Then H | Ψµ

〉
= HX | Ψ̃µ

〉
= XX−1HX | Ψ̃µ

〉
= XHeff | Ψ̃µ

〉
=

ǫµX | Ψ̃µ

〉
= ǫµ | Ψµ

〉
, which concludes the proof.

The subspace ǫP contains information regarding both the P and the Q spaces.

Furthermore, the similarity transformation depends only on this space. Let | α
〉

(| β
〉
) be a basis for the P (Q) space, and (A)αµ =

〈
α | Ψµ

〉
, (B)βµ =

〈
β | Ψµ

〉
.

Then, it is easily proven that a solution to Eq. (5.32) is

ω = A · (B)−1. (5.33)

This similarity transformation is not hermitian, however an equivalent effective

interaction can be written as,

Heff =
P + ω√

P (1 + ω†ω)P
H P + ω√

P (1 + ω†ω)P
. (5.34)

It is clear that the effective interaction stores information regarding correlations

in the Q–space, while solving only in the P space. Alas, this procedure produces, in

general, A–body interactions, which solution is as difficult as finding the full space
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solutions. To cope with this problem, one approximates the effective interaction,

while keeping the property of converging to the bare interaction as P → 1.

A good approximation is used in the “No Core Shell Mode” (NCSM) approach

(Navrátil and Barrett, 1996, 1998, 1999). The approximation is to include in the

effective potential only two–body effective interactions:

Veff = PX−1

[
A∑

i<j=1

Vij

]
XP −→ V app

eff =
A∑

i<j=1

V
(2)
eff,ij. (5.35)

The two–body effective potential is the non–trivial part of the two–body effective

Hamiltonian, i.e. one decomposes H(2) = H0 +
∑A

i<j=1 V
(2)
ij with [H0, P ] = [H0, Q] = 0

and QH0P = PH0Q = 0. Then the two–body effective Hamiltonian is built using a

Lee–Suzuki transformation:

H(2)
eff =

P2 + ω2√
P2(1 + ω†

2ω2)P2

H(2) P2 + ω2√
P2(1 + ω†

2ω2)P2

, (5.36)

thus,
A∑

i<j=1

V
(2)
eff,ij = H(2)

eff − PH0P. (5.37)

5.2.2 EIHH method

In the EIHH method, one solves the hyper–radial part of the Hamiltonian. Then, for

each hyper–radius ρ, the two–body hamiltonian is clearly

H(2) =
1

2MN

K̂2

ρ2
+ VA,A−1. (5.38)

Let us note that:

• This Hamiltonian includes the total hyper–angular kinetic energy.

• The only interacting particles are the “last” two.

• The residual A−2 system acts as a mean–field force, entering only through the
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collective hyper–radius. The hyper–radius enters not only in the kinetic energy,

but also in the potential matrix element, as the relative distance between the

last two particles is ~rA,A−1 =
√

2~ηA−1 =
(√

2ρ sinϕA, η̂A−1

)
.

• The calculation includes only one–dimensional integration.

Choosing the model space within the HH formalism is quite natural, as the two–body

Hamiltonian of Eq. (5.38) is diagonal in the quantum numbers of the A− 2 residual

system. Thus, the P2–space is chosen as P2 = {[K] : K ≤ Kmax, [KA−2] fixed}. It is

clear that Q2 = {[K] : K > Kmax, [KA−2] fixed}. A numerical calculation of the Q2

space includes a numerical cutoff KMAX which assures convergence. This depends

on the orbitals of the potential, and was checked to be KMAX ∼ 60 for S–wave

interaction and KMAX ∼ 180 for P–wave interaction. The construction of ǫP space

is now trivial, using Eq. (5.33).

By construction, the effective interaction is “state dependent”. This means that

for every fixed value of KA−2 one has to calculate a similarity transformation. In

Mintkevich and Barnea (2004) it was demonstrated that the “no–core” approach is

equivalent to the bare Hamiltonian (through a unitary transformation), in the limit

P → 1. It was also shown that any effective two body operators constructed through

the Lee–Suzuki similarity transformation of Eq. (5.36) can be regarded accurate to

second order in the limit P → 1.

The EIHH method accelerates the convergence of the HH expansion, and has been

shown to do so in the calculation of nuclear bound states and reactions of nuclei in

the mass range 3 ≤ A ≤ 7 (for example (Barnea et al., 2000, 2001b,a; Bacca et al.,

2004, 2002; Gazit and Barnea, 2004; Gazit et al., 2006a; Gazit and Barnea, 2007c)).



6Photoabsorption on 4He

with a realistic nuclear

force

In previous chapters I outlined a detailed description of the theoretical background for

ab-initio calculation of few–body nuclear structure and reactions. In the first section

of this chapter, the application of these methods to the 4He total photoabsorption

cross section is presented with the realistic nucleon-nucleon (NN) potential Argonne

v18 and the three-nucleon force (3NF) Urbana IX, as published in Gazit et al. (2006a).

In the second part of the chapter, based on (Gazit et al., 2006b), sum–rules of this

cross–section are investigated, emphasizing relations to ground state properties.

6.1 Photoabsorption Calculation

6.1.1 The Unretarded Dipole Approximation

For low energy reactions, below the pion production threshold, a good approximation

for the photoabsorption cross–section, σγ , is using only the leading electric dipole

(E1) in its non–relativistic long wavelength approximation. In addition, since the

Siegert theorem (Sec. 2.3) applies for the conserved electro–magnetic current, the

dipole operator is proportional to the Coulomb multipole. Thus, the effects of MEC

are implicitly included.

As a result, the total photoabsorption cross section is given by

σγ(ω) =
4π2α

2J0 + 1
ωR(ω) , (6.1)

where α is the fine structure constant, J0 denoting the nucleus total angular momen-

tum, and

R(ω) =

∫∑∣∣∣〈Ψf | D̂z |Ψ0〉
∣∣∣
2

δ(Ef −E0 − ω) (6.2)

59
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is the response function in the unretarded dipole approximation with D̂z =
∑A

i=1
τ3
i z′i
2

.

The wave functions of the ground and final states are denoted by
∣∣Ψ0/f

〉
and the

energies by E0/f , respectively. The operators τ 3
i and z′i are the third components of

the i-th nucleon isospin and center of mass frame position.

We refer back to Sec. 2.3 and recall the Siegert theorem, which ensures that the

dominant part of the exchange current contribution is included. In the classical few-

body nuclei this has proven to be an excellent approximation (Golak et al., 2002;

Arenhövel and Sanzone, 1991), particularly for photon energies below 50 MeV.

For triton, σγ(
3H) (Golak et al., 2002) the contributions of retardation and other

multipoles lead to an enhancement of σγ by less than 1% for ω ≤ 40 MeV. The

contribution grows with energy transfer. This result is rather insensitive to the nuclear

force model. When calculating with AV18 NN potential only, the contribution is 5%

for ω = 60 MeV, 16% for ω = 100 MeV, and 26% at pion threshold (ω = 140 MeV).

When including UIX 3NF the numbers change to 5%, 18%, and 33% at ω = 60,

100, and 140 MeV, respectively. If one bares in mind that the cross–section is almost

exhausted in the giant dipole resonance (GDR), below 40 MeV, the approximation is

appropriate for the photoabsorption process below pion–threshold.

6.1.2 Calculation of The Response Function

In order to find the Response function, the LIT method is used, calculated with the

Lanczos algorithm (see Chap. 4).

The EIHH expansions of the ground state
∣∣Ψ0

〉
and the LIT vector

∣∣Ψ̃
〉

are per-

formed with the full HH set up to maximal values of the HH grand-angular momentum

quantum number K (K ≤ K0
m for Ψ0, K ≤ Km for Ψ̃).

The ground state properties of 4He calculated using the EIHH approach are shown

in Tab. 6.1. The convergence of the binding energy, Eb, and matter radius are pre-

sented as a function of K0
m. Since the EIHH method is not variational the asymptotic

Eb value can be reached from below or above, in fact both cases are realized in Tab. 6.1.

Both convergence patterns are not sufficiently regular to allow safe extrapolations to

asymptotic values. The calculated ground state properties of 4He agree quite well
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Table 6.1: Convergence of HH expansion for the 4He binding energy Eb [MeV] and

root mean square matter radius 〈r2〉 12 [fm] with the AV18 and AV18+UIX potentials.
Also presented are results of other methods (see text).

AV18 AV18+UIX

K0
m Eb 〈r2〉 12 Eb 〈r2〉 12

6 25.312 1.506 26.23 1.456
8 25.000 1.509 27.63 1.428
10 24.443 1.520 27.861 1.428
12 24.492 1.518 28.261 1.427
14 24.350 1.518 28.324 1.428
16 24.315 1.518 28.397 1.430
18 24.273 1.518 28.396 1.431
20 24.268 1.518 28.418 1.432

FY1 24.25 - 28.50 -
FY2 24.22 1.516 - -
HH 24.21 1.512 28.46 1.428

GFMC - - 28.34 1.44

with those of other methods, presented in Tab. 6.1. The other calculations are done

with the FY equations (in Nogga et al. (2002); Lazauskas and Carbonell (2004)),

the HH expansion (in Viviani et al. (2005)) and the GFMC method (Wiringa et al.,

2000), and appear in this order in Tab. 6.1. One should compare the binding energies

to the experimental value of 28.296 MeV.

The EIHH convergence of the transform L(σ) is excellent for the AV18 potential.

Here we discuss in detail only the case AV18+UIX, where the convergence is quite

good, but not at such an excellent level. The reason is that in our present EIHH

calculation an effective interaction is constructed only for the NN potential, while the

3NF is taken into account as bare interaction.

In Fig. 6.1 we show results for the transform L obtained with various Km and K0
m

values. Since we take K0
m = Km− 1, the corresponding transform can be denoted by

LKm. One sees that there is a very good convergence beyond the peak, that the peak

height is very well established, but that the peak position is not yet fully converged
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Figure 6.1: Convergence of LKm with σI = 10 MeV (AV18+UIX).

in view of the fact that we aim for a percentage level accuracy. In fact with increasing

Km the peak is slightly shifted towards lower σR.

By observing the relative error of the transform, ∆Km = LKm,19/L19 with Lα,β =

Lα−Lβ , this point is illustrated better, see Fig. 6.2 (the chosen σR-range starts at the
4He(γ) break-up threshold). One again notes the very good convergence for σR > 30

MeV with almost identical results from L13 to L19. Altogether we consider our result

for σR > 30 MeV as completely sufficient. However, it is obvious that convergence is

not entirely reached for lower σR.

A trivial solution for this is an additional increase in Km. However, L19 includes

already 364000 states in the HH expansion. Thus, a further increase is beyond our

present computational capabilities. Fortunately a closer inspection of Fig. 6.2 shows

that the convergence proceeds with a rather regular pattern: (i) L13,11 ≃ L11,9 and

L17,15 ≃ L15,13 and (ii) L19,17 ≃ L17,15/1.5 ≃ L13,11/(1.5)2. Therefore it is possible to

obtain an extrapolated asymptotic result.
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Figure 6.2: Convergence of ∆Km = (LKm − L19)/L19 (AV18+UIX).

The extrapolation used is a Padé approximation (Fabian and Arenhövel, 1976;

Basdevant, 1972)

L∞
Km

= LKm−8 + LKm−4,Km−8/(1−
LKm,Km−4

LKm−4,Km−8
) . (6.3)

6.1.3 Results and Discussion

In Fig. 6.3 the results for σγ,Km obtained from the inversions of the transforms LKm

are presented. Due to the Lorentz kernel the σγ presents the same features as L itself:

stable peak height with a value very close to 3 mb, and not yet completely converged

peak position.

In Fig. 6.3 the asymptotic Padé approximations are given, where σ∞
γ,17 and σ∞

γ,19

result from the inversions of L∞
17 and L∞

19. Unquestionably, the extrapolated L∞
Km

have

a lower numerical quality than the calculated LKm and consequently the stability

for the corresponding inversions worsens. Therefore, an additional constraint in the

inversion is imposed by fixing the peak cross section to the already converged value of
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Figure 6.3: Convergence of σγ,Km (AV18+UIX), also shown σ∞
γ,17 and σ∞

γ,19.

3 mb. In Fig. 6.3 it is evident that σ∞
γ,17 and σ∞

γ,19 are very similar, hence establishing

a very good approximation for the asymptotic σγ . One also notices that compared to

σγ,19 they show a shift of the peak position by about 1 MeV towards lower energy.

The final results for the cross–section are presented in Fig. 6.4a. Due to the 3NF

one observes a reduction of the peak height by about 6% and a shift of the peak

position by about 1 MeV towards higher energy. Very large effects of the 3NF are

found above 50 MeV with an enhancement of σγ by e.g. 18, 25, and 35% at ω = 60,

100, and 140 MeV, respectively. The discussion in the previous section indicates that

the 3NF effect could change somewhat if all multipole contributions are considered.

It is very interesting to compare the 3NF effects on σγ(
4He) to those found for

σγ(
3H/3He) (Efros et al., 2000; Golak et al., 2002). Surprisingly, the reduction of the

peak height is smaller for 4He. For 3H/3He the size of the reduction is similar to the

increase of Eb (10%), whereas for 4He the 3NF increases Eb by 17%, but reduces the

peak by only 6% and thus cannot be interpreted as a simple binding effect.
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Figure 6.4: Total 4He photoabsorption cross section: (a) σγ (MT,AV18) and σ∞
γ,19

(AV18+UIX); experimental data from (Arkatov et al., 1979). (b) as (a) but also
included upper/lower bounds and various experimental data (see text), area between
dotted lines (Berman et al., 1980; Feldman et al., 1990), dotted box (Wells et al.,
1992), squares (Nilsson et al., 2005), and circles (Shima et al., 2005).
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One can find additional differences at higher energy–transfer. The enhancement of

σγ(
4He) due to the 3NF is significantly stronger, namely about two times larger than

for the three-body case. Interestingly this reflects the above mentioned different ratios

between triplets and pairs in three- and four-body systems. An integration of σγ up

to pion threshold yields 93.0 (AV18) and 97.4 MeVmb (AV18+UIX) thus showing a

rather small difference. If one considers also contributions beyond pion threshold the

difference becomes more pronounced, in fact integrating up to 300 MeV one finds 103

(AV18) and 114 MeVmb (AV18+UIX). The latter values correspond to enhancements

of 72 % (AV18) and 91 % of the classical Thomas-Reiche-Kuhn sum rule. Different

sum–rules will be discussed in the next section.

In Fig. 6.4a we compare the cross–section with the one achieved using the semi-

realistic Malfliet-Tjon (MT) NN potential (Efros et al., 1997b; Barnea et al., 2001a).

Similar to σγ(
3H/3He) (Efros et al., 2000) one finds a rather realistic result in the

giant resonance region (overestimation of the peak by about 10-15%) and quite a

correct result for the the peak position; however, at higher energy σγ is strongly

underestimated for 4He, by a factor of three at pion threshold. Also shown are data

from Arkatov et al. (1979), the only measurement of σγ(
4He) in the whole energy

range up to pion threshold. In the peak region the data agree best with the MT

potential, while for the high-energy tail one finds the best agreement with the AV18

potential.

A comparison of the low-energy results to further data is presented in Fig. 6.4b.

For the AV18+UIX case upper/lower bounds are included to account for possible

errors in the extrapolation, Eq. (6.3). As bounds we take ±(σ∞
γ,19 − σγ,19)/2; we

believe that this is a rather safe error estimate.

For a better understanding of the data in Fig. 6.4b a few comments are needed:

1. In Wells et al. (1992) the peak cross section is determined from Compton scat-

tering via dispersion relations.

2. The dashed curve corresponds to the sum of cross sections for (γ, n) from

Berman et al. (1980) and (γ, p)3H from Feldman et al. (1990) as already shown

in Efros et al. (1997b).
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3. The data from the above mentioned recent (γ, n) experiment (Nilsson et al.,

2005) are included only up to about the three-body break-up threshold, where

one can rather safely assume that σγ ≃ 2σ(γ, n) (see also Quaglioni et al.

(2004)).

4. In Shima et al. (2005) all open channels are considered. One sees that the

various experimental σγ are quite different, exhibiting maximal deviations of

about a factor of two.

The theoretical σγ agrees quite well with the low-energy data of (Berman et al., 1980;

Feldman et al., 1990). In the peak region, however, the situation is very unclear.

There is a rather good agreement between the theoretical σγ and the combined data

of (Nilsson et al., 2005) and (Wells et al., 1992), while those of (Berman et al., 1980;

Feldman et al., 1990) are quite a bit lower. Very large discrepancies are found in com-

parison to the recent data of Shima et al. (2005). It is evident that the experimental

situation is rather unsatisfactory and further improvement is urgently needed.

6.2 Photonuclear Sum Rules and the Tetrahedral

Configuration of 4He

Sum rules (SR) are related to moments of different order of the photonuclear cross

section and reflect important electromagnetic properties of nuclei. In fact they can

often be expressed in terms of simple ground state properties in a model independent

or quasi model independent way. Well known examples are the Thomas-Reiche-Kuhn

(TRK) sum rule (Landerburg and Reiche, 1923; Kuhn, 1923; Thomas, 1925), which

gives information about the importance of exchange effects in nuclear dynamics via

the so-called TRK enhancement factor κTRK, the bremsstrahlung sum rule (BSR)

(Levinger and Bethe, 1950; Brink, 1957; Foldy, 1957; Dellafiore and Brink, 1977),

which is connected to the nuclear charge radius and to the mean distance between

protons (Dellafiore and Lipparini, 1982), and the polarizability sum rule (PSR) (Friar,

1975), related to the electric nuclear polarizability, which is proportional to the shift

in energy levels due to external electric field.
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These SR assume that the dominant contribution to the cross section comes

from unretarded electric dipole (E1UR) transitions. Two- and three-body stud-

ies (Arenhövel and Sanzone, 1991; Golak et al., 2002) indeed confirm that other

contributions are much smaller. Much discussed is also the Gerasimov-Drell-Hearn

(GDH) sum rule (Drell and Hearn, 1966; Gerasimov, 1965), which is related to the

nuclear anomalous magnetic moment.

In this chapter, the TRK, BSR and PSR of 4He are considered within a real-

istic nuclear potential model consisting of two- and three-body forces (AV18 and

UIX (Wiringa et al., 1995; Pudliner et al., 1997)). The GDH sum rule is trivial for
4He: it vanishes, since the 4He total angular momentum is equal to zero. Also inves-

tigated are the related moments by integrating explicitly the properly weighted total

photoabsorption cross section calculated in the previous section.

The aim of this study is to show that in some cases sum rules can allow an exper-

imental access to two-body properties of the nuclear ground state, like the proton-

proton, neutron-neutron and proton-neutron distances. In the case of 4He this allows

to test the validity of the configuration tetrahedral symmetry of this nucleus and at

the same time to “measure” the amount of symmetry breaking.

This section aims also at providing a guideline for experiments, for which a direct

test of SR is difficult, as only lower bounds for the SR can be determined, as well as

at giving an idea of the reliability of the SR approach to heavier systems, where the

direct theoretical determination of the cross section, and therefore its integration, is

presently out of reach. The advantage to perform this kind of study in 4He, com-

pared to analogous ones in the two- (Arenhövel and Fabian, 1977) and three-body

systems (Efros et al., 1997a), is that 4He is a rather dense and compact nucleus, re-

sembling heavier systems more closely. Only now that realistic theoretical results for

the photonuclear cross section are available such a study is possible and one can put

the extrapolation of the results to heavier systems on safer grounds.
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6.2.1 SR and the Nucleus Ground State

We start by recalling the formalism of the photonuclear SR. The various moments of

the photonuclear cross section are defined as

mn(ω̄) ≡
∫ ω̄

ωth

dω ωn σE1UR
γ (ω) , (6.4)

where ω is the photon energy and ωth and ω̄ indicate threshold energy and upper

integration limit, respectively. Where σE1UR
γ (ω) is the unretarded dipole cross section,

which can be written as

σE1UR
γ (ω) = G ω R(ω) , (6.5)

where G = 4π2α/(3(2J0 + 1)). R(ω) is the nuclear response function to excitations of

the operator ~D is the unretarded dipole operator:

~D =

A∑

i=1

~riτ
3
i /2, (6.6)

where A is the number of nucleons and τ 3
i and ~ri are the third component of the

isospin operator and the coordinate of the ith particle in the center of mass frame,

respectively. For n = 0 the SR is the TRK SR, n = −1 is the BSR, and n = −2 the

PSR.

Assuming that σE1UR
γ (ω) converges to zero faster than ω−n−1 and applying the

closure property of the eigenstates of the hamiltonian H , it is straight forward to get

the following identities for SR with n = 0,−1,−2:

ΣTRK ≡ m0(∞) =
G
2
〈0|
[
~D,
[
H, ~D

]]
|0〉 (6.7)

ΣBSR ≡ m−1(∞) = G 〈0| ~D · ~D|0〉 (6.8)

ΣPSR ≡ m−2(∞) = G
∑

n

(En − E0)
−1|〈n| ~D|0〉|2 , (6.9)

Working out the expressions in Eqs. (6.7 - 6.9), one finds that those moments

are related to interesting properties of the system under consideration. In fact the
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TRK sum rule is also given by the well known relation (Landerburg and Reiche, 1923;

Kuhn, 1923; Thomas, 1925)

ΣTRK = G 3NZ

2mA

(
1 + κTRK

)
, (6.10)

where N and Z are the neutron and proton numbers, respectively, m is the nucleon

mass and κTRK is the so-called TRK enhancement factor defined as

κTRK ≡ mA

3NZ
〈0|[ ~D, [V, ~D]]|0〉 . (6.11)

From this expression it is evident that κTRK embodies the exchange effects of the

nuclear potential V , since the double commutator in (6.11) vanishes for systems like

atoms, where no exchange effects are present.

In the literature one finds a few interesting equivalences for the bremsstrahlung

sum rule. Rewriting the dipole operator as ~D = (NZ/A)~RPN , where ~RPN denotes

the distance between the proton and neutron centers of mass, one has (Brink, 1957)

ΣBSR = G
(
NZ

A

)2

〈0|R2
PN |0〉 . (6.12)

Foldy (1957) demonstrated that

ΣBSR = G NZ

A− 1
〈r2

p〉 , (6.13)

where 〈r2
p〉 is the mean square (m.s.) point proton radius

〈r2
p〉 ≡

1

Z
〈0|

Z∑

i=1

r2
i |0〉 . (6.14)

However, this relation is valid only under the assumption that the ground state wave

function is symmetric in the space coordinates of the nucleons.

Dellafiore and Brink (1977) have found that, in the framework of the oscillator
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shell model, one has

ΣBSR = G
(
Z2〈r2

p〉 − Z〈r
′2
p 〉
)
, (6.15)

where 〈r′2
p 〉 is the m.s. distance of protons with respect to the proton center of mass

~RP

〈r′2
p 〉 ≡

1

Z
〈0|

Z∑

i=1

(~ri − ~RP )2|0〉 . (6.16)

Later, in Dellafiore and Lipparini (1982), it was shown that the validity of Eq. (6.15)

is not limited to the oscillator shell model, but it is a model independent relation,

which can also be written as

ΣBSR = G
(
Z2〈r2

p〉 −
Z(Z − 1)

2
〈r2

pp〉
)
, (6.17)

where 〈r2
pp〉 is the m.s. proton-proton distance

〈r2
pp〉 ≡

1

Z(Z − 1)
〈0|

Z∑

i,j=1

(~ri − ~rj)
2|0〉 . (6.18)

For the BSR two additional relations exist, which are easy to prove, but, to our

knowledge, have not been considered in the literature, viz

ΣBSR = G
(
N2〈r2

n〉 −
N(N − 1)

2
〈r2

nn〉
)

(6.19)

and

ΣBSR = G NZ
2

(
〈r2

pn〉 − 〈r2
p〉 − 〈r2

n〉
)
, (6.20)

where 〈r2
n〉 is the m.s. point neutron radius and 〈r2

αβ〉 are the m.s. nucleon-nucleon

(NN) distances, i.e.

〈r2
nn〉 ≡

1

N(N − 1)
〈0|

N∑

i,j=1

(~ri − ~rj)
2|0〉 , (6.21)

〈r2
pn〉 ≡

1

NZ
〈0|

Z∑

i=1

N∑

j=1

(~ri − ~rj)
2|0〉 . (6.22)
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It is interesting to note that Eqs. (6.17), (6.19) and (6.20) express ΣBSR via a one-body

(〈r2
α〉) as well as a two-body quantity (〈r2

αβ〉).
Finally, regarding the polarizability sum rule, one has

ΣPSR = 2π2αD , (6.23)

where αD denotes the nuclear polarizability in the E1UR approximation.

6.2.2 Calculation of SR using the LIT method

There are various approaches for the calculation of moments and sum rules. The

obvious one is to obtain the moments by integrating the 4He total photoabsorption

cross section of Sec. 6.1. However, a more direct approach to obtain the SR exist, as

explained in the following.

One way to evaluate the LIT is by using the Lanczos technique described in

Subsec. 4.2.1. We recall that the LIT can be re-expressed as

L(σR, σI) =
1

σI

〈0| ~D · ~D|0〉 Imx00(z) (6.24)

with z = E0 + σR + iσI and

|φ0〉 =
~D|0〉√

〈0| ~D · ~D|0〉
. (6.25)

x00(z) can be expressed (cf. Eq. (4.16) as a continued fraction containing the Lanczos

coefficients ai and bi, defined in Eq. (4.10).

Therefore, the implementation of the Lanczos algorithm leads to L(σR, σI). While

the inversion of the LIT (Efros et al., 1999) gives access to R(ω), and thus to the

moments of Eq. (6.4), the normalization of the Lanczos ”pivot” |LP 〉 = ~D|0〉 and the
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Lanczos coefficients allow to obtain the SR of Eqs. (6.7-6.9). In fact one has:

ΣPSR = G x00(E0) , (6.26)

ΣBSR = G 〈LP |LP 〉 , (6.27)

ΣTRK = (a0 −E0) ΣBSR . (6.28)

6.2.3 Results and Discussion

We use a HH basis, therefore the ground state |0〉, the Lanczos ”pivot” |LP 〉 and the

Lanczos coefficients an are given in terms of HH expansions. While for the ground

state the expansion is characterized by an even hyperspherical grand-angular quantum

number K and total isospin T=0, |LP 〉 has to be expanded on {K ′ = K + 1, T = 1}
states (we neglect the AV18 isospin mixing, which is very small, as shown for the 4He

ground state in Nogga et al. (2002); Viviani et al. (2005)). The rate of convergence

of the various SR results from Eqs.(6.26-6.28) is given in Tab. 6.2 as a function of the

hyperspherical grand-angular quantum number K. One observes sufficiently good

convergence patterns for ΣTRK and ΣBSR. For the latter an additional test of the

convergence is performed, calculating ΣBSR directly as mean value of the operator

~D · ~D on the ground state (Eq. (6.8)). In this way the expansion of |LP 〉 on {K ′ =

K + 1, T = 1} states is avoided. We obtain practically identical results.

From Tab. 6.2 one sees that the convergence of ΣPSR is slower when the three-

nucleon force (3NF) is included. This is not a surprise, in view of the problem found

for the cross section itself in the previous section. In fact it has been shown that

the peak of the giant dipole resonance is slightly shifting towards lower energies with

increasing K. The sum rule ΣPSR, which has the strongest inverse energy weighting,

is more sensitive to this shift than the other two SR.

We have used σ∞
γ extrapolated in the previous section, to determine from Eq. (6.4)

the various moments for ω̄ = 300 and 135 MeV. These results are also listed in

Table 6.2.

For ΣTRK one sees that the SR is not yet exhausted at 300 MeV. In fact more

than 20% of the strength is still missing. At pion threshold, one has only about 2/3
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AV18+UIX
ΣPSR ΣBSR ΣTRK

K 10−2[mb MeV−1] [mb] 102[mb MeV]

8 6.230 2.398 1.430
10 6.277 2.396 1.448
12 6.331 2.394 1.451
14 6.382 2.401 1.458
16 6.434 2.406 1.460
18 6.473 2.410 1.462

AV18
7.681 2.696 1.383

AV18+UIX
ω̄ [MeV] m−2 (ω̄) m−1 (ω̄) m0 (ω̄)

135 6.55 2.27 .944
300 6.55 2.37 1.14

Table 6.2: Convergence in K of the SR for AV18+UIX potentials. The converged
AV18 results are also shown. The last two lines of the table show the convergence in
ω̄ of the various moments.

of ΣTRK. As was already discussed in (Efros et al., 2000) for the triton case, the

rather strong contribution from higher energies seems to be connected to the strong

short range repulsion of the AV18 potential. As to the TRK enhancement factor

the present calculation gives κTRK = 1.31 for AV18 and 1.44 for AV18+UIX. These

numbers are somewhat larger than older results obtained either with a variational

wave function and AV14+UVII potential (κTRK = 1.29 (Schiavilla et al., 1987)) or

with more approximated wave functions and various soft and hard core NN potentials

(κTRK = 0.9− 1.30 (Weng et al., 1973; Heinze et al., 1978; Gari et al., 1978)).

For ΣBSR, as expected, the contribution at high energy is much smaller than for

ΣTRK , in fact at ω̄ = 300 MeV the missing sum rule strength is less than 2%. For

ΣPSR the strength beyond 300 MeV is even more negligible. Actually in this case

the explicit integration leads to an even higher result than the sum rule evaluation

of Eq. (6.27). The seeming contradiction is explained by the already discussed fact

that ΣPSR is not yet convergent, while for the explicit integration an extrapolated
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cross section is used. Indeed, integrating the K=18 cross section we obtain a value

of 6.46 mb, which is consistent with the corresponding sum rule result of 6.47 mb,

within the numerical error of the calculation. For the AV18+UIX force the value

of the polarizability αD that we deduce from the extrapolated ΣPSR is 0.0655 fm3.

The AV18 result, which already shows a good convergence for K = 16, is 0.0768

fm3. This means that the 3NF reduces the polarizability by 15%. It would be very

interesting to measure this nuclear polarizability by Compton scattering, as a test of

the importance of the three-body force on such a classical low-energy observable. We

find that ΣPSR is the SR that is affected most by the 3NF. In fact ΣBSR is reduced by

only 10% and one has an opposite effect on ΣTRK with a 5% increase. The quenching

or enhancement of SR due to the 3NF is the reflection of its effects on the cross section

i.e a decrease of the peak and an increase of the tail.

This work allows a few conclusions regarding a very old question, already discussed

in Levinger and Bethe (1950), of the “existence” of the SR (finiteness of mn(ω̄) for

ω̄ → ∞), which is connected to the high-energy fall-off of the E1UR cross section.

Since there is a rather good consistency between the SR and the moment values, it

can be stated with a rather high degree of confidence that ΣTRK (and consequently

the other two SR) “exist”. Therefore one can try to extract some information about

the high energy behavior of the cross section and hence about the “existence” of

SR with higher n. With an ω−p ansatz for the fall-off of the cross section above

pion threshold, and requiring that ΣTRK is 146 mb MeV (see Table 6.2), one gets a

rather weak energy fall-off, i.e. p ≃ 1.5. This value is also consistent with ΣBSR. In

fact, adding such a tail contribution to m−1(135) one gets ΣBSR = 2.39 mb, to be

compared with 2.41 mb in Table 6.2. The value of p might be somewhat different for

other potentials, but probably it will not change much. An additional, rather safe,

conclusion is that higher order SR do not exist for realistic nuclear potential models.

A very interesting aspect can be viewed by observing the BSR. As already men-

tioned ΣBSR contains information about one- and two-body densities via 〈r2
α〉 and

〈r2
αβ〉, respectively. This means that a measurement of ΣBSR and the knowledge of the

experimental m.s. radius allow to determine 〈r2
αβ〉 via Eqs. (6.17),(6.19) and (6.20).

In this way one gets information about the internal configuration of 4He as it is
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explained in the following.

In his derivation of Eq. (6.13), Foldy assumed a totally symmetric 4He spatial wave

function, which corresponds to a configuration where the four nucleons are located at

the four vertexes of a tetrahedron. For such a configuration one has 〈r2
p〉 = 〈r2

n〉 = 〈r2〉
and 〈r2

pp〉 = 〈r2
nn〉 = 〈r2

np〉 with QT ≡ 〈r2
αβ〉/〈r2〉 = 8/3. Foldy’s assumption is a

very good approximation for 4He, but other spatial symmetries (mixed symmetry,

antisymmetric) are also possible.

What can be learned from ΣBSR with respect to this question?

For 4He, which is a T=0 system one can safely assume that 〈r2
p〉 = 〈r2〉 = 〈r2

n〉 (isospin

mixing is tiny (Viviani et al., 2005; Nogga et al., 2002)). Using in Eqs. (6.17), (6.19)

and (6.20) the AV18+UIX value of 〈r2〉 = 2.04 fm2 from Sec. 6.1 (which coincides with

the experimental one (Borie and Rinker, 1978), corrected for the proton charge radius)

and ΣBSR from Table 6.2, one obtains 〈r2
pp〉 = 〈r2

nn〉 = 5.67 fm2 and 〈r2
pn〉 = 5.34 fm2,

i.e. two values which differ by about 6%.

The ratios Qpp(nn) ≡ 〈r2
pp(nn)〉/〈r2〉 and Qnp ≡ 〈r2

np〉/〈r2〉 are not much different

from the correspondent value QT of a classical tetrahedral configuration. We obtain

Qpp = 2.78 and Qnp = 2.62 instead of QT = 2.67. One notices that Qpp(nn) − QT ≃
2(Qnp − QT ). This reflects the different numbers of proton-proton and neutron-

neutron pairs (2) with respect to proton-neutron pairs (4). Using Eq. (6.12) one can

also derive the distance between the proton and neutron centers of mass. One has

Rpn = 1.58 fm instead of 1.65 fm for the tetrahedral configuration.

Notice that with 〈r2〉 = 2.04 fm2 the ”tetrahedral” BSR would be 2.62 mb, the

same value that one obtains using Eq. (6.13). This value is 9% larger than our result.

The distortions that I find from the 9% smaller BSR are the consequence of the

different effects of the potential on isospin triplet and isospin singlet pairs.

A rather intriguing conclusion arises: when considered in its body frame 4He

should look like a slightly deformed tetrahedron. Of course this statement has to

be interpreted in a quantum mechanical sense, regarding the mean square values of

the nucleon-nucleon distances on the two-body density. It is clear that one cannot

measure this deformation ”directly”, since it is not a deformation of the one-body

charge density (the 4He charge density has only a monopole). On the other hand such
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a deformation is accessible experimentally in an indirect way via the measurements

of the charge radius and of ΣBSR.

This leads to the question how exactly ΣBSR can be measured in a photonuclear

experiment. Two points have to be addressed: i) the contributions of E1 retardation

and higher multipoles, which are not contained in ΣBSR, but which will contribute to

the experimental cross section and ii) the contribution of the high energy tail.

Regarding point i), additional effects of the E1 retardation and higher multipoles have

been calculated in Ref. (Golak et al., 2002) for the AV18+UIX potentials in a Faddeev

calculation. Using those results one finds that E1 retardation and higher multipoles

increase m−1(135) by about 1% only. In fact according to Gerasimov(Gerasimov,

1964) there is a large cancelation of E1 retardation and other multipoles. There is no

reason for a larger effect in 4He. On the contrary, since the leading isovector magnetic

dipole (M1) transition is suppressed in this nucleus (it is zero for an S-wave) one can

expect an even smaller contribution. As to point ii), considering the fall-off of the

triton E1UR cross section around pion threshold from Ref. (Golak et al., 2002) one

obtains a result very similar to our 4He case, namely p ≃ 1.5. However, including the

other multipole contributions one gets a considerably smaller value, namely p ≃ 1.1.

This is no contradiction with the small increase of 1% for ΣBSR, since the inverse

energy weighted cross section integrated from 100 to 135 MeV gives only a rather

small contribution to the sum rule. On the other hand one would overestimate ΣBSR

taking the full cross section. Thus it is suggested that the tail contribution to an

experimental BSR should be estimated using the theoretically established fall-off ω−p

with p ≃ 1.5.



7Neutrino Scattering on

Light Nuclei in Supernovae

The inelastic scattering of neutrino off A = 3 nuclei and 4He is calculated microscop-

ically at energies typical for core collapse supernova environment. The calculation

is carried out with the Argonne v18 nucleon–nucleon potential and the Urbana IX

three nucleon force. Full final state interaction is included via the Lorentz integral

transform (LIT) method. The contribution of axial meson exchange currents to the

cross sections is taken into account from effective field theory of nucleons and pions

to order O(Q3). The main results of the chapter are based on a series of papers

published in Gazit and Barnea (2004, 2007b,a,c); O’Connor et al. (2007).

The chapter starts with an overview on core collapse supernovae, emphasizing the

abundances and role of 4He and A=3 nuclei in the processes taking place in the SN

environment. The cross-sections are then presented and discussed. Finally, neutrino

mean-free-paths in the neutrinosphere region are evaluated.

7.1 Core-collapse Supernovae

A massive star, above about 10 solar masses, evolves over millions of years, to create

an onion–like structure of layers, with lighter elements in the atmosphere and heavier

in the center, where the gravitational pressure is highest. The cycle of fusion stops

when the core burns Si nuclei to iron. Further burning can not be a source of energy,

as the binding energy per nucleon is peaked in iron. Consequently, the evolution of

the star comes to an end. Observations have shown that this death is not peaceful,

it is followed by an enormous explosion, shining in a magnitude of a galaxy, believed

to occur in the following chain of events.

When the core reaches the Chandrasekhar mass it cannot support its own gravity

and collapses. The collapse halts only when the core reaches nuclear density, in which

78
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short–range nuclear forces dominate the dynamics. This initiates an outgoing shock

wave. As the shock travels through the outer layers of the core it losses energy due

to thermal neutrino radiation, and dissociation of iron nuclei (bound by about 8

MeV/nucleon) to α particles and free nucleons.

The fate of this shock is a matter of debate. In the “prompt shock” mechanism,

the shock has enough initial energy to burst through the core and cause an explosion.

However, in modern calculations, about 100 miliseconds after bounce the shock stalls

at about 200 km from the center and becomes an accretion shock, with matter from

the outer layers of the star falling through it. During this period the newly born

proto-neutron star in the center of the star cools by neutrino emission. This huge

burst of neutrinos, in total energy of almost 1053 ergs, is believed to deposit enough

energy in the matter below the shock to revive the shock. This so called “delayed

shock” mechanism has not been quantitatively proved in numerical calculations, but

received a qualitative proof in the observation of SN 1987A. Comparing the energy

of the neutrino–burst to the gravitational well of the star, it is easy to realize that

one needs only 1% of neutrino energy to be transferred to matter. This turns to be

a highly delicate problem, in which the accuracy of the microscopic input is a crucial

factor. The heating is achieved through elastic scattering on nucleons and electrons.

Haxton (1988) has suggested that inelastic scattering on nuclei can increase neutrino–

matter coupling. The higher energy of the heavy flavored neutrinos1 favors neutral

scattering on nuclei as an energy transfer method. Thus, neutrino interaction with

nuclei, which exist below the shock, is believed to have an important part in the

explosion process. This will be discussed thoroughly in Subsec. 7.1.1.

Another outcome of the huge neutrino flux is changing the chemical evolution of

the star, mainly by break–up of nuclei into fragments of nuclei which act as seeds

for different nucleosynthesis processes. 4He break–up by neutrinos has a role in this

process, which will be reviewed in Subsec. 7.1.2.

1The characteristic temperatures of the emitted neutrinos are about 6− 10 MeV for νµ,τ (ν̄µ,τ ),
5− 8 MeV for ν̄e, and 3− 5 MeV for νe
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7.1.1 Shock revival and Light Nuclei

In order to estimate how significant is neutrino interaction with light nuclei in the

shocked region, one needs to know not only the neutrino luminosity but also the

mean–free–paths of neutrinos in the region. Thus one needs the composition of the

shocked regions and the cross–sections for neutrino scattering on light nuclei. In

Fig. 7.1 one can view the density profile of an 11M⊙ progenitor, 120 miliseconds after

bounce (Livne, 2007). The calculation is 1D simulation, with full neutrino–transport,

and using the equation of state developed by Shen et al. (1998). The red line in

the Figure is the α mass–fraction, which is the most abundant nuclei in the shocked

region by this calculation. The rest of the composition are nuclei and free electrons.

One can see that in this simulation the amount of 4He is about 1% up to 100 km off

center and rises to around 10−20% just below the shock. Thus neutrino scattering off
4He could play a role in the revival of the shock, as first indicated by Haxton (1988).

Moreover, the energy transfer due to elastic scattering is low, ω ∼ T 2/m, therefore

inelastic scattering could be as important as elastic scattering on nucleons. One has

to keep in mind that with every inelastic scattering there is a substantial release of

energy – larger than the break–up energy of 20 MeV. A complete study on the role

of 4He excitation on the shock revival was not done, and is called for. However, a

first study was carried out by (Ohnishi et al., 2006), and showed a small effect on

accretion shock instabilities.

Nuclear statistical equilibrium (NSE) models, like those used by Shen et al.

(1998), predict abundances based on binding energies and the quantum numbers

of nuclei. However, NSE models only treat approximately (or neglect) strong in-

teractions between nuclei, and consequently break down as the density increases.

Recently a description of low-density nuclear matter (composed of neutrons, pro-

tons and alpha particles) in thermal equilibrium based on the virial expansion was

developed(Horowitz and Schwenk, 2006a,b). The virial equation of state (EoS) sys-

tematically takes into account contributions from bound nuclei and the scattering

continuum, and thus provides a framework to include strong-interaction corrections

to NSE models. This formalism makes model-independent predictions for the con-

ditions near the neutrinosphere, i.e. for densities of ρ ∼ 1011−12 g/cm3 and high
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Figure 7.1: Density profile of 11M⊙ star, 120 miliseconds after bounce. The black
line is the total density, and the red line is the α mass fraction. One can view the
accretion shock at about 200 km off center.

temperatures T ∼ 4 MeV (Costantini et al., 2004; Lunardini and Smirnov, 2004).

In particular, the resulting alpha particle concentration differs from all equations of

state currently used in SN simulations, and the existence of trinuclei in this area is

expected. For example, in Fig. 7.1 the region of about 10− 30 km off center is char-

acterized by this density range. Thus, the calculation substantially underestimates

the abundances of A = 3, 4 nuclei in this region.

To determine the abundance of A = 3 nuclei near the neutrinosphere in super-

novae, we presented in O’Connor et al. (2007) an extension of the virial approach

to the EoS to explicitly include neutrons, protons, α particles, 3H and 3He nuclei;

deuterons are included as a bound state contribution to the proton-neutron virial

coefficient.

The resulting mass fractions xi = Aini/nb (ni is the density of the i element of mass

Ai, and nb is the baryon density), are shown in Fig. 7.2 for neutrinosphere densities

and temperatures, and various proton fractions Yp = (np +2nα +2n3He +n3H)/nb, i.e.

the ratio of proton number to baryon number.
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Figure 7.2: Mass fractions of nucleons and A = 3, 4 nuclei in chemical equilibrium
as a function of temperature T. The top and bottom rows correspond to a density
of 1011 g/cm3 and 1012 g/cm3 respectively, and from left to right the proton fractions
are Yp = 0.1, 0.3 and 0.5.

The main result of this EoS is the model–independent prediction that the mass-

three fraction can be significant (up to 10%) near the neutrinosphere. Thus, we

present in Sec. 7.3.4 predictions for the neutral-current inclusive inelastic cross-sections

on mass-three nuclei, based on microscopic two- and three-nucleon interactions and

meson-exchange currents, including full final-state interactions via the Lorentz inte-

gral transform (LIT) method.

7.1.2 Nucleosynthesis and ν – α Interaction

Due to the high temperature of µ and τ neutrinos (and anti-neutrinos), a substan-

tial amount of them carry more than 20 MeV, and may dissociate the 4He nucleus

through inelastic neutral current reactions. This creates the seed to light element
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nucleosynthesis in the surrounding stellar envelope (Woosley et al., 1990). As a part

of this explosive nucleosynthesis, or “ν -nucleosynthesis”, a knock out of a nucleon

from a 4He nucleus in the helium rich layer, followed by a fusion of the remaining

trinucleus with another α particle, will result in a 7–body nucleus. This process is

an important source of 7Li, and of 11B and 19F through additional α capture reac-

tions. In fact the production of 11B in supernovae (also due to neutrino interaction on
12C) can be calibrated by measuring ratio of 11B to 10B in meteorites. Woosley and

Weaver (1995) have suggested that the calculated abundance is too large. Yoshida

et al. (2005) have shown that the Li and B production depends highly on the neutrino

temperature, and mainly on the spectrum character of the high energy tail (due to

the high dissociation energy of α). They used this observation to fit the neutrino

temperature to reproduce the measured abundance. However, a correct description

of the process must contain an exact, energy dependent cross-section for the neutral

inelastic α− ν reaction, which initiates the process.

The relatively low temperature of νe and ν̄e emitted from the core suppress the

probability for inelastic reactions of these neutrinos with 4He in the supernova sce-

nario. However, the mixing of the first and the third neutrino mass eigen–states is

enhanced, due to matter effects, in the Oxygen/Carbon layers, just below the He

layer. This significantly changes the spectrum of electron (anti–)neutrinos reaching

the He layer, and yields a secondary source of energetic electron neutrinos. As in-

dicated by Yoshida et al. (2006), the resulting charge current inelastic reactions on
4He could double the aforementioned yields. In this reference, they speculate that

a test for neutrino oscillation properties could be observing the ratio of 7Li to 11B

in stars. Yet again, this could lead to quantitative conclusions only if neutrino–4He

cross–sections are available and accurate.

Elements heavier than iron are produced mainly by a different nucleosynthesis

process – neutron capture. The so called r–process, in which this capture is rapid,

is still missing a neutron–source in nature. Epstein et al. (1988) have suggested that

neutrons produced by neutrino spallation of 4He in the helium rich layer could be

such a source.

However, the most probable source of r-process neutrons is the neutrino–driven
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wind blowing from the surface of a newly born proto-neutron star (PNS). This is a

high entropy region, thus all protons combine with neutrons to form 4He, with excess

neutrons left over. This makes the r-process picture puzzling, as the free neutrons

that initially accompany the 4He, are then converted to protons by charge current

reactions, which then form more 4He (Woosley and Hoffman, 1992). Thus it is very

hard to maintain a neutron excess (necessary for the r-process) in the wind. Neutrino

cross sections for 4He breakup are part of the detailed balance that determines what

residual neutron abundance will remain in a neutrino-driven wind.

7.2 Weak Interaction Observable – Beta Decay Rate

In order to give parameter free predictions of weak processes, one needs the LECs of

the EFT. There is only one unknown LEC, which is calibrated to fit a weak interaction

observable.

A most researched weak interaction observable is the β decay. In this decay, a

neutron (which can be free or bound in a nucleus) spontaneously transforms into a

proton, accompanied by electron and anti–neutrino emission. This instability could be

found in many elements, transforming one element to another. The lightest elements

undergoing this decay are: n→ p+e−+ν̄e,
3H→3 He+e−+ν̄e and 6He→6 Li+e−+ν̄e.

The β decay rate provides a direct test for the weak interaction model and the

axial currents in the nucleus. This aspect is even more appealing as the β transitions

are between bound–states of nuclei, and usually include small momentum transfer.

Thus, the decay is governed by the Gamow–Teller and Fermi operators, which are

proportional to the low momentum transfer approximation of EA
1 and CV

0 operators.

In fact, to leading order the β decay rate is simply given by (see for example (Schiavilla

and Wiringa, 2002))

Γβ
fi = ft

G(+)2m5
e

2π3

(
|F|2 + g2

A|GT|2
)

(7.1)
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where the Gamow Teller and Fermi reduced matrix elements:

F ≡
〈
f
∥∥

A∑

i=1

τi,+
∥∥i
〉

(7.2)

GT ≡
〈
f
∥∥

A∑

i=1

τi,+~σi

∥∥i
〉
, (7.3)

ft includes the entirety of the kinematics:

ft ≡
∫ mi−mf

1

dǫǫ
√
ǫ2 − 1(mi −mf − ǫ)2F (+)(Zf , ǫ) (7.4)

here ǫ is electron energy in units of electron mass, m are masses in the same units,

with subscript i(f) indicating initial (final) state, respectively. Since isospin mixing is

usually small for light nuclei, the Fermi operator can be evaluated accurately. Thus,

by using this formula, one can deduce the experimental GT to very good accuracy

(Chou et al., 1993):

GT(n→ p+ e− + ν̄e) =
√

3 · (1± 0.003) (7.5)

GT(3H→3 He + e− + ν̄e) =
√

3 · (0.961± 0.005) (7.6)

The axial coupling constant, gA = 1.2670±0.0004, is calibrated using the neutron life–

time, where the matrix element is analytic. For the triton, axial MEC in the nuclei

influence the half–life. Thus, the triton GT is used to calibrate unknown constants

in the MEC model. In the case of MEC based on the EFT introduced in Chap. 3,

the only unknown is the renormalization LEC d̂r.

Keeping the philosophy of the EFT* approach, the AV18/UIX Hamiltonian is

used as the nuclear interaction for the calculation of the trinuclei wave functions.

One then calculates the GT (E1
A) using the EFT based MEC, and calibrates d̂r to

reproduce the half life. This procedure follows (Park et al., 2003). One could use

their result for d̂r(Λ). However, as a test for both the nuclear wave functions and the

numerics.

When reproducing, there are additional benchmarks one should note. First, the
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Binding Energy [MeV]
Method 3H 3He

EIHH 8.471(2) 7.738(2)
CHH 8.474 7.742
FY 8.470 7.738

Experimental 8.482 7.718

Table 7.1: Binding energies of 3H and 3He calculated using AV18/UIX Hamiltonian
model compared to the same calculation done by using FY equations and expansion
on correlated hyperspherical harmonics (CHH) basis (Nogga et al., 2003). For the
EIHH calculation, the number in parenthesis indicates the numerical error. Also
shown are the experimental values.

calculation can be checked by comparing binding energies of the trinuclei to those

achieved by the FY and the correlated hyperspherical harmonics methods (Nogga

et al., 2003), with the same potential model. This appears in Table 7.1. One can see

a very good comparison between the calculations.

An additional benchmark is a calculation of the single operator contribution to

the GT amplitude of 3H half life (which will be denoted by GT1B) (Schiavilla et al.,

1998) with the same potential model, using the CHH method. This comparison reads:

GT1B(CHH) = 1.596⇔ GT1B(EIHH) = 1.598(1).

Finally, I reproduce the d̂r(Λ) of (Park et al., 2003). My results are:

d̂r = 1.02± 0.02± 0.08 for Λ = 500 MeV

d̂r = 1.78± 0.03± 0.08 for Λ = 600 MeV (7.7)

d̂r = 3.8± 0.06± 0.12 for Λ = 800 MeV

Where the first error is numerical, i.e. convergence of the calculation, and the second

correspond to the experimental uncertainty in the triton GT strength. This is to be
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compared with (Park et al., 2003),

d̂r = 1.00± 0.07 for Λ = 500 MeV

d̂r = 1.78± 0.08 for Λ = 600 MeV

d̂r = 3.9± 0.10 for Λ = 800 MeV.

The minor differences are of the order of those encountered in other observables.

The differences in the error–bars are probably due to differences in the experimental

source.

Summing up, the results of this section give us the needed information to carry

on parameter free predictions of weak processes. As a side benefit, I get a verification

of the numerical methods used, and the derived weak currents.

7.3 Neutrino Scattering Cross-sections Calculation

The calculation of the neutral-current inclusive inelastic cross-sections follows the

procedure used to calculate the photoabsorption process. We solve the bound state

problem based on the Argonne v18 nucleon-nucleon potential (Wiringa et al., 1995)

and the Urbana IX three-nucleon interaction (Pudliner et al., 1997). The bound state

binding energies of the trinuclei are given in the previous section, and those of 4He

in Table 6.1.

Neutrino scattering on A = 3 and 4He nuclei only induces transitions to continuum

states, since the nuclei have no bound excited states. The correct description of the

process is achieved via the LIT method. The resulting Schrödinger-like equations are

solved using the effective interaction hyperspherical harmonics (EIHH) approach of

Chap. 5.

We use chiral EFT meson-exchange currents (MEC) as presented in Chap. 3. The

EFT approach is an appropriate approximation, as Q . 60 MeV is the typical energy

in our processes of interest, and the cutoff Λ is of the order of the EFT breakdown

scale Λ = 400 − 800 MeV. In configuration space, the MEC are obtained from a

Fourier transform of propagators with a cutoff Λ (cf. Eq. (3.36)). This leads to a
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cutoff dependence, which is renormalized by the cutoff-dependent counterterm d̂r(Λ),

given in Eq. (7.7).

7.3.1 Leading Multipole Contributions

In the supernova scenario one has to consider neutrinos with up to about 60 MeV. The

main result of this is that it is sufficient to retain contributions up to O(q2) in the mul-

tipole expansion. This conclusion is checked on 4He, and is accurate to the percentage

level. This is consistent with the discussion of Sec. 2.3. The leading contributions to

the inelastic cross-section are due to the axial vector operators EA
1 , E

A
2 , M

A
1 , L

A
2 , L

A
0

and the vector operators CV
1 , E

V
1 , L

V
1 . As explained in the previous chapter, the lead-

ing vector operators are all proportional to each other due to the Siegert theorem,

valid in this energy range (see discussion in Sec. 2.3). The axial charge operator CA
0

and the magnetic MV
1 operator are both proportional to the inverse of the nucleon

mass – thus have no substantial contribution, exactly as relativistic corrections. In

fact, for a percentage level accuracy, the following long wavelength approximation can

be used (Donnelly and Walecka, 1976), for the impulse approximation the spin–orbital

parts of the operators are

CV
0 (q) =

1√
4π

CA
0 (q) =

i√
4π
~σ · ~∇

LA
0 (q) = igA

qr

3
[~σ ⊗ Y1(r̂)]

(0)

EA
1M(q) = −i gA

√
2

3
[~σ ⊗ Y0(r̂)]

(1)
M

CV
1M(q) =

qr

3
Y1M(r̂)

EV
1M(q) = −

√
2
ω

q
CV

1M(q)

LV
1M(q) = −ω

q
CV

1M(q)

MV
1M(q) = − i√

6π

q

2MN
lM
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MA
1M (q) = −gA

qr

3
[~σ ⊗ Y1(r̂)]

(1)
M

EA
2M(q) = i

√
3

5
gA
q

3
[~σ ⊗ Y1(r̂)]

(2)
M

LA
2M (q) =

√
2

3
EA

2M (q)

The axial MEC operator, given in Eq. (3.48), is invariant to an exchange between

the particles. Thus, it does not influence multipoles of opposite symmetry. The MEC

will have a substantial influence only on the GT (E1
A) operator, as it will be discussed

in the following subsections.

7.3.2 Inelastic Cross-sections and Energy-transfer

The result of the current calculation gives an energy and angle dependent inclusive

cross–section. In order to present the cross–sections, we use the fact that the neutrino

spectra are approximately thermal. Thus, the calculated cross sections are averaged

over energy and angle, assuming a Fermi-Dirac distribution for the neutrinos with

zero chemical potential, temperature Tν , and neutrino momentum k,

f(Tν , k) =
N

Tν
3

k2

ek/Tν + 1
, (7.8)

where N−1 = 2
∑∞

n=1(−1)n+1/n3 is a normalization factor. The quantities of inter-

est are the cross-sections and energy transfer cross-sections averaged over neutrino

spectra of temperature Tν ,

〈σ〉Tν =

∫ ∞

ωth

dω

∫
dki f(Tν , ki)

dσ

dkf

, (7.9)

〈ωσ〉Tν =

∫ ∞

ωth

dω

∫
dki f(Tν , ki) ω

dσ

dkf

, (7.10)

where ki,f are the initial and final neutrino energy, ω = ki− kf is the energy transfer,

and ωth denotes the threshold energy of the breakup reaction. For 4He, 3He and 3H

the threshold energies are ωth = 19.95, 6.23, 5.5 MeV respectively.
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It is well known that realistic 2–body NN potentials lead to an under-binding of

about 0.5−1 MeV for the 3He and the triton nuclei and an under-binding of about 3−4

MeV for 4He. The AV18 threshold energies are 16.66 MeV, 5.37 MeV and 4.67 MeV

for 4He, 3He and triton breakup reaction, respectively. Thus the AV18 model has a

discrepancy, ∆ ≈ 3.3 MeV for the threshold energy of the 4He, ∆ ≈ 0.83 MeV for
3He break–up, and ∆ ≈ 0.86 MeV for 3H, with respect to the experimental inelastic

reaction threshold.

Thermal averaging is highly influenced by the threshold energy, thus very sensitive

to this discrepancy. In order to correct for this difference the response function is

shifted to the true threshold, i.e. R(ω) −→ R(ω −∆), when only NN potentials are

used.

7.3.3 Neutrino scattering on 4He nucleus

In terms of “many–body” nuclear physics, 4He is a closed shell nucleus, i.e. its total

angular momentum is zero and its spin structure is governed by an S–wave. Some

of the leading operators are strongly suppressed due to the special structure of the

ground state.

In fact, the Gamow-Teller operator contributes only due to the small P– and D–

wave components of the ground state wave function. This reflects on the axial MEC

contribution to the cross–section. In magnitude, the Gamow–Teller strength is less

than 0.25% of the total cross–section, for all considered nuclear potentials: AV18,

AV8’, and AV18/UIX. Due to MEC, the strength grows to 1%± 0.5%. The error is

due to the Λ dependence. In this case, the part of the error which correspond to the

triton half–life is of no importance. The MEC contribution is calculated only for the

AV18/UIX potential model, and d̂r is taken from Eq. (7.7).

The special internal structure of the nucleus affects also the MV
1 operator, which

vanishes for 4He. In addition, 4He is an almost pure zero–isospin state (Nogga et al.,

2002), hence the Fermi operator vanishes.

As a result, the leading contributions to the inelastic cross-section are due to the

axial vector operators EA
2 ,M

A
1 , L

A
2 , L

A
0 and the vector operators CV

1 , E
V
1 , L

V
1 , which
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Figure 7.3: Relative error in the sum-rule of the leading response functions with
respect to the hyper-angular momentum quantum number K (for 4He). Calculated
using the AV8’ NN potential model. The error bars reflect the uncertainty in inverting
the LIT.

are all proportional to the momentum transfer q.

The combination of the EIHH and LIT methods brings to a rapid convergence in

the Response functions. In Fig. 7.3, one can see the relative error in the sum-rule of

the main response functions when calculated with NN potential (in this case Argonne

v′8, but the conclusions hold for AV18 as well), with respect to the hyper-angular

momentum quantum number K. It can be seen that upon convergence the relative

error is well below 1%. The error bars presented reflect the error in inverting the LIT.

This convergence pattern holds also for the AV18 potential model. Bearing in mind

that the cross-section, up to kinematical factors, is the sum of the response functions,

this is a measure of the accuracy in the calculated cross-section.

The convergence rate is outstanding even when including the 3NF. In Fig. 7.4

we present for the leading multipoles the convergence of the LIT as a function of

K. It can be seen that the EIHH method results in a rapid convergence of the LIT

calculation to a sub-percentage numerical accuracy. We conclude that the 3NF does

not affect the convergence rate of these operators.
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Figure 7.4: Convergence of LÔ1Ô2
/q for the leading operators, as a function of the

HH grand angular momenta K (for 4He).

The general form of the cross–section is shown in Fig. 7.5.

In Table 7.2 we present the temperature averaged total neutral current inelastic

cross–section as a function of the neutrino temperature for the AV8’, AV18, and the

AV18+UIX nuclear Hamiltonians and for the AV18+UIX Hamiltonian adding the

axial MEC. From the table it can be seen that the low–energy cross–section is rather

sensitive to details of the nuclear force model. This sensitivity is visible already when

comparing the AV8’ and AV18 results, where an effect of about 10% is discovered.

The 3NF have a bigger influence of about 25%. Similar tendency was also ob-

served for the hep process (Marcucci et al., 2000). The effect reduces with neutrino

temperature, from 35% for Tν = 2 MeV, to 23% for Tν = 12 MeV.

The results are of the same order of magnitude as previous estimates (Woosley

et al., 1990), also appearing in the Table, though the differences can reach 25%. The

current work predicts a stronger temperature dependence, with substantial increment

at high temperatures. This indicates a different structure of the predicted resonances.

The cross–section is dominated by the axial E2 and M1 multipoles, which for

example exhaust about 90% of the cross–section at Tν = 10 MeV.
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T
〈
σ0

x

〉
T

= 1
2

1
A

〈
σ0

νx
+ σ0

νx

〉
T

[10−42cm2]

[MeV] AV8’ AV18 AV18+UIX AV18+UIX+MEC Woosley (1990)
4 2.09×10−3 2.31×10−3 1.63×10−3 1.66×10−3 −
6 3.84×10−2 4.30×10−2 3.17×10−2 3.20×10−2 3.87×10−2

8 2.25×10−1 2.52×10−1 1.91×10−1 1.92×10−1 2.14×10−1

10 7.85×10−1 8.81×10−1 6.77×10−1 6.82×10−1 6.87×10−1

12 2.05 2.29 1.79 1.80 1.63
14 4.45 4.53 3.91 3.93 −

Table 7.2: Temperature averaged neutral current inclusive inelastic cross-section per
nucleon as a function of neutrino temperature. The last column is the calculation in
Woosley et al. (1990).

T 〈σ〉T [10−42cm2]
[MeV] (νx,ν

′
x) (ν̄x,ν̄

′
x) (νe,e

−) (ν̄e,e
+)

2 1.47×10−6 1.36×10−6 7.40×10−6 5.98×10−6

4 1.73×10−3 1.59×10−3 8.60×10−3 6.84×10−3

6 3.34×10−2 3.07×10−2 1.63×10−1 1.30×10−1

8 2.00×10−1 1.84×10−1 9.61×10−1 7.68×10−1

10 7.09×10−1 6.54×10−1 3.36 2.71

T 〈σω〉T [10−42 MeVcm2]
[MeV] (νx,ν

′
x) (ν̄x,ν̄

′
x) (νe,e

−) (ν̄e,e
+)

2 3.49×10−5 3.23×10−5 1.76×10−4 1.42×10−4

4 4.50×10−2 4.15×10−2 2.27×10−1 1.80×10−1

6 9.26×10−1 8.56×10−1 4.56 3.70
8 5.85 5.43 28.4 22.9
10 21.7 20.2 103.8 84.4

Table 7.3: Temperature averaged inclusive inelastic cross–section (upper part) and
energy transfer cross-section (lower part) per nucleon as a function of temperature.
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Figure 7.5: Temperature averaged inelastic cross-sections at temperature T = 10
MeV for 4He. The solid line is the differential cross-section, 〈 dσ

dω
〉T = 1

2
1
A
〈dσν

dω
+ dσν

dω
〉T ,

(left scale). The dashed line is the differential energy transfer cross-section, 〈ω dσ
dω
〉T =

1
2

1
A
〈ω dσν

dω
+ ω dσν

dω
〉T , (right scale).

In Table 7.3 we present (for AV18+UIX+MEC) the temperature averaged cross–

section and energy transfer as a function of the neutrino temperature for the various

processes. In both tables it can be seen that the charged current process is roughly a

factor of five more efficient than the neutral current process.

7.3.4 Neutrino scattering on A = 3 nuclei

Contrary to 4He, the GT is not suppressed for the trinuclei, which have J = 1
2

total an-

gular momentum. At low-momentum transfer, the Gamow-Teller operator dominates

for the cross section. It contributes about 60% of the cross–section at a temperature

of 1 MeV. At higher-momentum transfer, higher-order multipoles (mainly the axial

E2 and M1) start to play an important role, thus the GT part of the cross–section

decreases to about 20% at Tν = 5 MeV, and to about 10% at neutrino temperature

of 10 MeV.

As a consequence of the descending importance of GT, the MEC contribution

also decreases with temperature. In Fig. 7.6, one can view the relative contribution
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Tν [MeV] 3H 3He

1 1.97×10−6 1.68×10−5 3.49×10−6 2.76×10−5

2 4.62×10−4 4.73×10−3 6.15×10−4 5.94×10−3

3 5.53×10−3 6.38×10−2 6.77×10−3 7.41×10−2

4 2.68×10−2 3.37×10−1 3.14×10−2 3.77×10−1

5 8.48×10−2 1.14 9.70×10−2 1.25
6 2.09×10−1 2.99 2.35×10−1 3.21
7 4.38×10−1 6.61 4.87×10−1 7.03
8 8.20×10−1 13.0 9.03×10−1 13.7
9 1.41 23.4 1.54 24.6
10 2.27 39.3 2.47 41.2

Table 7.4: Averaged neutrino- and anti-neutrino-3H and -3He neutral-current inclu-
sive inelastic cross-sections per nucleon (A=3), 〈σ〉Tν = 1

2A
〈 σν +σν 〉Tν (left columns),

and energy transfer cross-sections, 〈ωσ〉Tν = 1
2A
〈ωσν + ωσν 〉Tν (right columns), as a

function of neutrino temperature Tν , in units of 10−42 cm2 and 10−42 MeVcm2 respec-
tively.

of MEC to the energy transfer,
〈ωσ〉MEC

Tν
−〈ωσ〉No MEC

Tν

〈ωσ〉No MEC
Tν

. The width of the line indicates the

error in the theoretical estimate, due to the cutoff dependance. The cutoff dependence

of both cross–sections is ∼ 2% for 1 MeV and < 1% for higher temperatures. This is

a rather strict validation of the calculation. The numerical convergence is very good

for the trinuclei ∼ 1%.

The 3NF affect the cross–sections by about 15%, which is less than the their effect

in 4He, however still substantial.

While not directly important for the shock revival, the asymmetry between the

scattering of neutrinos and anti-neutrinos increases with temperature: the difference

in the energy transfer grows gradually from 3% for a neutrino temperature of 3 MeV

to > 50% for 10 MeV temperatures.

7.3.5 Neutrino energy loss due to inelastic scattering

We can combine the energy transfer cross-sections with the A = 3, 4 mass fractions of

Fig. 7.2 to calculate the neutrino energy loss due to inelastic excitations of A = 3, 4
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Figure 7.6: Relative contribution of MEC to the energy transfer, i.e.
〈ωσ〉MEC

Tν
−〈ωσ〉No MEC

Tν

〈ωσ〉No MEC
Tν

. The width of the line indicates the error in the theoretical es-

timate, due to the cutoff dependance.

nuclei. In Fig. 7.7 we compare the total energy transfer cross-sections for 3H, 3He and
4He. The comparison clearly shows the huge difference between the cross–sections,

originating in the “open–shell” character of the trinuclei.

The neutrino of energy Eν will decrease due to inelastic excitations, and heat the

matter, at a rate dEν/dx given by

dEν

dx
= nb

∑

i=3H, 3He, 4He

xi 〈ωσ〉i, Tν . (7.11)

For simplicity, we neglect the energy transfer from nuclei to neutrinos required by

detailed balance. This is strictly correct only in the limit T ≪ Tν .

In Fig. 7.8, the neutrino energy loss due to inelastic scattering is shown for a

density of 1012 g/cm3 and neutrino temperature Tν = 6 MeV, as a function of the

matter temperature for various proton fractions. For T & 4 MeV, the energy loss is

dominated by the contributions from 3H nuclei. The total abundance of A = 3 nuclei

depends only weakly on the proton fraction (see Fig. 7.2), which is reflected in the

weak dependence of the neutrino energy loss as a function of proton fraction. Finally,

for lower densities, mass-three nuclei are less abundant (see Fig. 7.2), and therefore

also their contributions to the neutrino energy loss.
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Figure 7.7: Neutrino total energy transfer cross–section a function of the neutrino
temperature Tν for A = 3, 4 nuclei.
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temperature Tν = 6 MeV. The contributions from 3H, 3He and 4He nuclei, and the
total neutrino energy loss are shown for proton fractions Yp = 0.1, 0.3 and 0.5.



8Conclusions

In this thesis I have presented the methods and the results of ab–initio calculations

of electro–weak reactions on light nuclei. The reactions are calculated using realistic

NN potential, Argonne v18, and includes the Urbana IX 3NF. The full interaction is

taken into account not only for the ground state, but also for the continuum states

via the LIT method. For the solutions of the differential equations I use expansions

in hyperspherical harmonics via the EIHH approach.

In the next two sections I will briefly summarize the main results and implications

of the work.

8.1 Photoabsorption on 4He

I have presented the first complete calculation of the 4He total photoabsorption cross

section using a realistic nuclear force (AV18 NN potential and the UIX-3NF). The

results show a rather pronounced giant dipole peak typical to many body nuclei. This

microscopic calculation of a complex nucleus settles the long living debate regarding

the character of the peak.

The effect of the 3NF reduces the peak height by only 6%, less than expected

considering its large effect of almost 20% on the 4He binding energy and its different

role in the three-nucleon system. Beyond the giant dipole resonance 3NF effects

become much larger. With growing energy transfer their importance increases and at

pion threshold one finds a cross-section enhancement of 35%, about twice the effect

discovered in 3H/3He photoabsorption.

98
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The calculated cross–section was integrated with energy-transfer weights to inves-

tigate sum–rules for 4He, which can be connected to important ground state proper-

ties. Three well known photonuclear sum rules for 4He are studied, viz the Thomas-

Reiche-Kuhn, the bremsstrahlung and the polarizability SR. Two new equivalences

for the BSR have allowed deduction of information about two-body properties of the

nuclear ground state, like the proton-proton, neutron-neutron and proton-neutron

distances.

A result with some beauty is tying the SR to the configuration symmetry of the

nucleus. In particular, the configuration tetrahedral symmetry of 4He was tested,

and found this symmetry to be slightly broken. An experimental way to access

this symmetry breaking is proposed, via a measurement of the BSR which could be

performed in one of the existing or planned low-intermediate energy photonuclear

facility.

The calculated cross–section can be compared to numerous experiments estimat-

ing the reaction. Close to threshold the theoretical cross section agrees quite well

with experimental data. In the giant resonance region, where there is no established

experimental cross section, the results are in good agreement with the data of Nilsson

et al. (2005) and Wells et al. (1992), while a strong disagreement is found when com-

pared with the data of Shima et al. (2005). In order to understand whether a nuclear

force model, which is constructed in the two- and three-nucleon systems, is sufficient

to explain the four-nucleon photodisintegration, further experimental investigations

are mandatory.

8.2 Neutrino Interaction with 4He and A=3 nuclei

in Supernova

The inelastic scatterings of neutrino off 4He, 3H and 3He are calculated microscopi-

cally at energies typical for core collapse supernova environment. These are the first

microscopic estimates of the processes, carried out with realistic nucleon forces. All

breakup channels and full final-state interactions were included via the LIT method.
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The contribution of axial meson exchange currents to the cross sections is taken into

account from effective field theory of nucleons and pions to order O(Q3), which re-

produce the triton half–life.

I estimate the overall accuracy of the calculation to be of the order of 5%. This

error is mainly due to the strong sensitivity of the cross–section to the nuclear model,

in particular to the 3NF. The numerical accuracy of our calculations is of the order

of 1%. The contribution of the axial MEC for 4He is small, in the percentage level.

However, for the trinuclei the MEC contribution could be up to 30% for low tem-

perature. The cutoff dependence for both A = 3, 4 nuclei, which is indicative to the

validity of the hybrid EFT approach, is negligible, less than a percent for neutrino

temperature above 2 MeV.

Using the virial abundances and the microscopic energy transfer cross-sections,

it is found that mass-three nuclei contribute significantly to the neutrino energy loss

due to inelastic excitations for T & 4 MeV, conditions typical to the neutrinosphere.

The predicted energy transfer cross-sections on mass-three nuclei in this area are

approximately one order of magnitude larger compared to inelastic excitations of 4He

nuclei.

To fully assess the role of neutrino breakup of 4He in core–collapse, the cross-

sections should be included in SN simulations. The ν − α interaction is of central

importance also for correct evaluation of the ν− and r− nucleosynthesis processes.

With the present work, I have made an important step in the path towards a more

robust and reliable description of neutrino–nuclei interaction role in core–collapse

supernovae.



AWeak Currents In the

Standard Model

In this appendix, the general structure of the weak currents in nuclei are deduced

from the standard model.

In the case of neutral neutrino scattering off a point proton, making use of the

Feynman diagrams, with the Z0 boson propagator approximated as gµν/M
2
Z one gets:

Tfi = −M−2
Z · ū(kf )

[ −ig
4cosθW

γµ(1− γ5)

]
u(ki)· (A.1)

·ū(Pf)

[ −ig
4cosθW

γµ

(
(1− 4 sin2 θW )− γ5

)]
u(pi) =

=
G√
2

[ū(k2)γ
µ(1− γ5)u(k1)] ·

[
ū(p2)γµ

(
1

2
(1− γ5)− 2 sin2 θW

)
u(p1)

]

Where G ≡
√

2g2

8M2
Zcos2θW

is the Fermi constant. A similar calculation for neutrino neutral

scattering on neutron yields a different result:

Tfi =
G√
2

[ū(k2)γ
µ(1− γ5)u(k1)] ·

[
ū(p2)γµ

(
−1

2
(1− γ5)

)
u(p1)

]
(A.2)

One can combine the results of equations A.2 and A.1, using the isospin symmetry

to get for the nucleon current:

Jµ = ū(p2)

[
τ0
2
γµ(1− γ5)− 2 sin2 θWγ

µ 1

2
(1 + τ0)

]
u(p1) (A.3)

For a complex nucleon, one keeps the symmetries of this current to write

J (0)
µ = (1− 2 · sin2 θW )

τ0
2
JV

µ +
τ0
2
JA

µ − 2 · sin2 θW
1

2
JV

µ (A.4)

=
τ0
2

(
JV

µ + JA
µ

)
− 2 · sin2 θWJ

em
µ
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Where JV
µ and JA

µ have vector and axial symmetry, respectively. The second equality

takes advantage of the conserved vector current hypothesis, by which the weak–vector

current is an isospin rotation of the electro–magnetic current.

A similar calculation for the charged current yields:

J (±)
µ =

τ±
2

(
JV

µ + JA
µ

)
(A.5)



BLepton Current

In this appendix the calculation of the lepton current matrix element is demonstrated.

I will show this for the case of a neutrino scattering, as calculation of this matrix

element for β decay or electron capture follow the same line.

The leptonic current is,

jµ(~x) = ψ̄ν(~x)γµ(1 + γ5)ψν′(~x) = lµe
−i~q·~x (B.1)

Where, for lepton reaction

lµ = ū(ν)γµ(1 + γ5)u(ν
′) (B.2)

Here, we keep the incoming particle is always a massless neutrino, while the outgoing

can be either a neutrino or a massive lepton. For anti-lepton reaction,

lµ = v̄(−ν ′)γµ(1 + γ5)v(−ν) (B.3)

For completeness, the needed matrix element for β− decay is:

lµ = ū(e)γµ(1 + γ5)v(−ν) (B.4)

The calculation of the cross-section include the expressions lλl
∗
ν . For the evaluation
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of this expression, the following facts concerning the γ matrices are helpful,

{γµ, γν} = 2gµν

{γ5, γ
µ} = 0

(1 + γ5)
2 = 2(1 + γ5)

γ0γ
†
νγ0 = γν

tr{γλγµγνγµ′} = 4(gλµgνµ′ − gλνgµµ′ + gλµ′gµν)

tr{γλγ5γµγνγµ′} = −4iǫλµνµ′

where the metric tensor gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




.

For any two spinors ψ1 and ψ2 and any 4× 4 matrix Γ,

(ψ̄1Γψ2)
∗ = ψ̄2γ0Γγ0ψ1

thus, for lepton reaction,

lλl
∗
ν = ū(α2)(k2)γµ(1 + γ5)u

(α1)(k1)ū
(α1)(k1)(1− γ5)γνu

(α2)(k2) (B.5)

To obtain the cross section it is necessary to sum over initial and average over final

lepton helicities.

lλl∗ν =
1

2

∑

α1α2

ū(α2)(k2)γµ(1 + γ5)u
(α1)(k1)ū

(α1)(k1)(1− γ5)γνu
(α2)(k2) (B.6)

It is helpful to use the fact that,

∑

α

u
(α)
ξ (k)ū

(α)
ξ′ (k) =

(
kµγ

µ +m

2Ep

)

ξξ′
(B.7)
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Thus (the mass term falls due to γ matrices algebra),

lλl∗ν =
νµν ′µ

′

4νν ′
tr{γλ(1 + γ5)γµγνγµ′} (B.8)

finally,

lλl∗ν =
1

νν ′
{νλν

′
ν + ν ′λνννµν

′
µ − iǫλµνµ′νµν ′µ

′} (B.9)

the calculation for anti-neutrino reaction is similar and gives

lλl∗ν =
1

νν ′
{νλν

′
ν + ν ′λνννµν

′
µ + iǫλµνµ′νµν ′µ

′} (B.10)

The general neutrino reaction cross-section requires the following expressions,

l0l
∗
0 = 1 + ν̂ · ν̂ ′ (B.11)

l3l∗3 = 1− ν̂ · ν̂ ′ + 2(ν̂ · q̂)(ν̂ ′ · q̂) (B.12)

l3l
∗
0 = q̂ · (ν̂ + ν̂ ′) (B.13)

1

2
(~l · ~l∗ − l3l∗3) = 1− (ν̂ · q̂)(ν̂ ′ · q̂) (B.14)

(~l × ~l∗)3 = S × 2iq̂ · (ν̂ − ν̂ ′) (B.15)

where qµ = ν ′µ − νµ is the momentum transfer. S is +1 for neutrino scattering and

β+ decay, and −1 for anti–neutrino scattering and β− decay.



CNon-relativstic expansions

of Dirac spinors expressions

Dirac spinor of a mass M , takes the form:

u(p, σ) =

√
Ep +M

2Ep

(
χσ

~σ·~p
Ep+M

χσ

)
(C.1)

where Ep =
√
p2 +M2 is the energy of the particle. It is useful to recall that ū = u†γ0.

This convention leads to a normalized density, i.e. u†u = 1

In this representation,

γ0 =

(
1 0

0 −1

)
, ~γ = γ0

(
0 ~σ

~σ 0

)
, γ5 =

(
0 1

1 0

)
, (C.2)

where we use γ0γ5γ
0 = −γ5 and γ0γ5~γ = −~σ.

One can now expand the needed matrix elements in the inverse mass:

ū(p′, σ′)γ0u(p, σ) = χ′†
σ

(
1− ~q2

8M2
+ i~q · ~σ × ~p

4M2

)
χσ (C.3)

ū(p′, σ′)~γu(p, σ) =
1

2M
χ′†

σ (~P − i~σ × ~q)χσ (C.4)

ū(p′, σ′)γ5γ
0u(p, σ) = − 1

2M
χ′†

σ (~σ · ~P )χσ (C.5)

ū(p′, σ′)γ5u(p, σ) =
1

2M
χ′†

σ (~σ · ~q)χσ (C.6)

ū(p′, σ′)γ5~γu(p, σ) = −χ′†
σ

(
~σ

(
1− P 2

8M2

)
+ i

~q × ~p
4M2

+
~P (~σ · ~P )− ~q(~σ · ~q)

8M2

)
χσ

(C.7)

where ~P = ~p+ ~p′ = −i(−→∇ −←−∇) and ~q = ~p− ~p′.
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DFeynman Diagrams for χPT

The Feynman rules are exhausted from the interaction Lagrangian, and from the

currents. This is done by expanding the complete term to first order in the pion field.

The diagrams are then easily achieved.

It is valuable to remind here the pion propogator i
k2−m2

π
, and the nucleon pro-

pogator i
6p−M

.

D.1 Leading Order Diagrams

The pion-nucleon interaction lagrangian to leading order in the pion field is given in

Eq. (3.17). The resulting Feynman rules appear in Fig. D.1.

q�
gA2f�5 6 q�a

k�q�
14f2� �ab 6 q� 

Figure D.1: The lowest order pion - nucleon Feynman diagrams. Nucleons are
indicated by solid lines, whereas pions are indicated by dashed lines.
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a� a�
� if� �ab� � 2 �igA�5 �a2 f�kmuÆab

a� k b b
Figure D.2: Vertices in the axial current. Crossed circles indicate the attachement
to the external probe.

The axial current to the same order is given in Eqs. (3.30 - 3.31), and appear in

Fig. D.2.

To lowest order in the pion field, one can get the following vector vertices from

Eqs. (3.27 - 3.28):

• iγµ τa

2
.

• igA

fπ
ǫabcγµγ5

τc

2
.

• −ǫabckµ.

D.2 Next-to Leading Order Diagrams

The NLO pion-nucleon interaction lagrangian to leading order in the pion field is given

in Eq. (3.21). The resulting Feynman diagram is identical to the diagram drawn in

the right part of Fig. D.1. The strength of the vertex is:

2i

f 2
πM

{
ĉ4ǫ

abc τc
2
kµqνσ

µν − ĉ3kµq
µδab

}
(D.1)

The NLO contribution to currents within the nuclei appear in Eqs. (3.31 - 3.28). The

resulting vector current includes two pions, thus of higher order. The resulting axial
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Figure D.3: Contact axial vertex in NLO.

vector diagram is identical to the one which appears in the center of Fig. D.2. The

additional strength is:

2

fπM

{
−ĉ4ǫabc τc

2
qνσ

µν + ĉ3q
µδab

}
(D.2)

The NLO Lagrangian includes in addition contact terms, as given in Eq. (3.22).

The form of the vertex is a contact term with an outgoing pion line, and the strength

of the resulting vertex is −gAD1

fπ
γ5 6 qτa.

The contact term contribution to the vector currents is zero in the non–relativistic

limit. However, the contribution to the axial current diagram does not vanishD1γ
µγ5

τa

2

with the diagram in Fig. D.3.

D.3 Example: Single Nucleon Operators For Neu-

trino Scattering

One can use the Feynman diagrams of the previous section to draw neutrino scattering

on a single nucleon:
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k�
p0�p0�

p�p�
a� a�

Figure D.4: Leading order 1-body axial vector current.

The resulting strength is identical to that achieved by standard nuclear physics ap-

proach (SNPA):

Maµ(1) = igAū(p
′)γ5

{
γµ− 6k kµ

k2 −m2
π

}
τa

2
u(p) = iū(p′) {FAγ

µγ5 + FPγ5k
µ} τ

a

2
u(p)

(D.3)

The second equality uses the known SNPA axial form factor FA = −gA, and pion

form factor FP = − 2MgA

k2−m2
π
. By non–relativistic expansion of the nucleon spinor, as ex-

plained in Appendix C, one gets the single nucleon scattering operators of Eqs. (3.43 -

3.46).

D.4 Example: Axial MEC Operators For Neutrino

Scattering

In order to continue to axial currents that involve two nucleons with a pion exchange,

we will find the amplitude for pion production. This is done in Ananyan et al. (2002),

and the resulting Feynman diagrams are given in Figure D.5. This is however wrong,

as the first three diagrams (starting upper left side) include pion exchange between

nucleons without any interaction of this pion with the external probe. The correct
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p�p� p�

p� p� p� p�p0�p0� p0�
p0�p0�p0�p0�

a� a�
a�

a�
a�

a�
a�

q� q� q� q�

q� q�
k� k�

k� k� q�
Figure D.5: Pion-production on a nucleon.

pion production amplitude is thus,

2fπM
abµ(π) = ū(p′)

{
−g2

A 6qγ5
1

( 6p′+ 6 q −M)
γ5 6k

kµ

k2 −m2
π

τ bτa

2
(D.4)

+iǫabc τc
2

[
( 6k− 6q) kµ

k2 −m2
π

− 2γµ

]}
u(p)

The two nucleon axial current is achieved through the exchange of a pion, as observed

in Figure D.6. The amplitude is:

Maµ(2) = Mabµ(π)
i

q2 −m2
π

gA

fπ
ū(p′2) 6qγ5

τ b

2
u(p2) +momenta permutations (D.5)

Taking the non-relativstic limit (O(1/M)) and the soft pion limit (q, k → 0), we get

for the pion production,

2fπM
abµ(π) ≈ −iū(p′)ǫabcτ cγµu(p) (D.6)

hence,

~Ma ≈ igA

8Mf 2
π

(τ (1) × τ (2))a(i ~P1 + ~σ1 × ~q + ~σ1 × ~k2)
~σ2 · ~k2

~k2
2 +m2

π

+ (1↔ 2), (D.7)
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p0�

p� p�2

p0�2
q�a� bM(�)

Figure D.6: Pion exchange contribution to the scattering amplitude .

Ma0 ≈ gA

4f 2
π

(τ (1) × τ (2))a ~σ · ~k2

~k2
2 +m2

π

+ (1↔ 2). (D.8)

where ~P1 = ~p+ ~p′, ~ki = ~pi − ~p′i, and ~q is the neutrino’s momentum.

An additional contribution to the pion production amplitude comes from NLO (cal-

culated using the diagrams in Figure D.7):

Mabµ
NLO = − 2ĉ4

fπM
ǫabc

{
gµ

λ −
kµkλ

k2 −m2
π

}
qν ū(p

′)σλν τ
c

2
u(p)+

+
2ĉ3
fπM

ǫabc

{
qµ − kµ

k2 −m2
π

k · q
}
δabū(p′)u(p), (D.9)

using Eq. (D.5) we can now get the NLO contribution to the pion exchange currents:

Maµ
NLO(2) = i

gA

f 2
π

{
−2ĉ4
M

ǫabc

[
gµ

λ −
kµkλ

k2 −m2
π

]
×

(
ū(p′1)σ

λν τ
c

2
u(p1)

qνqσ
q2 −m2

π

ū(p′2)γ
σγ5

τ b

2
u(p2)

)

+
2ĉ3
M

[
qµ − kµ

k2 −m2
π

k · q
]

qσ
q2 −m2

π

(
ū(p′1)u(p1)ū(p

′
2)γ

σγ5
τa

2
u(p2)

)}
.(D.10)
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a�
bq�

bq�
a�k�

Figure D.7: Pion production contribution from NLO lagrangian.

The non-relativistic reduction leads to no contribtion to the axial charge density and

to the following expression for the axial current:

~Ma
NLO(2) =

igA

2Mf 2
π

{
ĉ4
(
~τ (1) × ~τ (2)

)
~σ1 × ~k2 + 2ĉ3~τ

(2)a~k2

} ~σ2 · ~k2

~k2
2 +m2

π

. (D.11)

If we combine this with Eq. (D.7), we get

~Ma ≈ igA

2Mf 2
π

{
i

4
(~τ (1) × ~τ (2))a ~P1 + 2ĉ3~τ

(2)a~k2+

+

(
1

4
+ ĉ4

)
(~τ (1) × ~τ (2))a~σ1 × ~k2+

+
1

4
(~τ (1) × ~τ (2))a(~σ1 × ~q)

}
~σ2 · ~k2

~k2
2 +m2

π

+ (1↔ 2), (D.12)

The contribution of the contact Lagrangian vanishes for the axial charge operator in

the non–relativistic limit. Its contribution to the MEC reads:

Maµ
4 ≈ iD1

(
~σ1
~τ (1)a

2
+ ~σ2

~τ (2)a

2

)
. (D.13)

In order to get the scattering operators, one has to transform to configuration space.

After doing thus, one gets the final form of the MEC operators, appearing in Eq. (3.48).



EReduced Matrix Elements

of different opearators

In this chapter, I give a list of the needed matrix elements when calculating in the

HH expansion, as implemented in the program. In the following ~Σ is a spin spherical

tensor operator of order 1.

ME1

〈K(ls)j‖jJ(qx)YJ(x̂)‖K ′(l′s′)j′〉 =

= δs,s′(−)J+j′+l+s
√

(2j + 1)(2j′ + 1)

{
l J l′

j′ s j

}
×

〈Kl‖jJ(qx)YJ(x̂)‖K ′l′〉 (E.1)

using the fact that,

〈l‖YJ(x̂)‖l′〉 = (−)l

√
(2l + 1)(2J + 1)(2l + 1)

4π

(
l J l′

0 0 0

)
(E.2)

We finally get,

〈K(ls)j‖jJ(qx)YJ(x̂)‖K ′(l′s′)j′〉 =

= δs,s′(−)J+j′+s′

√
(2l + 1)(2j + 1)(2J + 1)(2l′ + 1)(2j′ + 1)

4π
×

{
l J l′

j′ s j

}(
l J l

0 0 0

)
〈Kl|jJ(qx)|K ′l′〉 (E.3)
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ME2

We use the fact that ~Σ · ~YJLM(x̂) =
[
Σ(1) ⊗ YL

](J)

M
,

〈K(ls)j‖jJ(qx)~Σ · ~YJLM(x̂)‖K ′(l′s′)j′〉 =
√

(2j + 1)(2J + 1)(2j′ + 1)

×






l′ s′ j′

L 1 J

l s j





〈Kl‖jJ(qx)YL(x̂)‖K ′l′〉〈s‖~Σ‖s′〉 (E.4)

putting now Eq. (E.2), we get

〈K(ls)j‖jJ(qx)~Σ · ~YJLM(x̂)‖K ′(l′s′)j′〉 = (−)l





l′ s′ j′

L 1 J

l s j





×
√

(2j + 1)(2l + 1)(2J + 1)(2L+ 1)(2j′ + 1)(2l′ + 1)

4π

×
(

l L l

0 0 0

)
〈s‖~Σ‖s′〉〈Kl‖jJ(qx)‖K ′l′〉 (E.5)

ME3

〈Kl‖~YJL(x̂) · ~∇‖K ′l′〉 = (−)J+1

√
(2l + 1)(2J + 1)(2L+ 1)(2l′ + 1)

4π

×[

{
J l′ l

l′ − 1 L 1

}
(

l L l′ − 1

0 0 0

)

(
l′ 1 l′ − 1

0 0 0

) l′

2l′ + 1
〈Kl|

(
d

dr
+
l′ + 1

r

)
|K ′l′〉

+

{
J l′ l

l′ + 1 L 1

}
(

l L l′ + 1

0 0 0

)

(
l′ + 1 1 l′

0 0 0

) l′ + 1

2l′ + 1
〈Kl|

(
d

dr
− l′

r

)
|K ′l′〉] (E.6)
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ME4

〈K(ls)j‖~YJL(x̂) · ~∇‖K ′(l′s′)j′〉 =

= δs,s′(−)J+j+l+s
√

(2j + 1)(2j′ + 1)

{
l J l′

j′ s j

}
〈Kl‖~YJL(x̂) · ~∇‖K ′l′〉 =

= δs,s′(−)j+l+s+1

√
(2j + 1)(2l + 1)(2J + 1)(2L+ 1)(2j′ + 1)(2l′ + 1)

4π

{
l J l′

j′ s j

}

×[

{
J l′ l

l′ − 1 L 1

}
(

l L l′ − 1

0 0 0

)

(
l′ 1 l′ − 1

0 0 0

) l′

2l′ + 1
〈Kl|

(
d

dr
+
l′ + 1

r

)
|K ′l′〉

+

{
J l′ l

l′ + 1 L 1

}
(

l L l′ + 1

0 0 0

)

(
l′ + 1 1 l′

0 0 0

) l′ + 1

2l′ + 1
〈Kl|

(
d

dr
− l′

r

)
|K ′l′〉] (E.7)

ME5

We note that

YLM(x̂)~∇ · ~Σ =
∑

J

(−)L−J

√
2J + 1

2L+ 1

[[
YL ⊗ ~∇

]J
⊗ ~Σ

]L

M

(E.8)

Thus

〈K(ls)j‖YL(x̂)~∇ · ~Σ‖K ′(l′s′)j′〉 =
∑

J

(−)L−J
√

(2j + 1)(2J + 1)(2j′ + 1)

×〈s‖~Σ‖s′〉





l′ s′ j′

J 1 L

l s j




〈Kl‖~YJL(x̂) · ∇‖K ′l′〉 (E.9)
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Radial Integrals

The radial matrix element to be calculated is,

〈(KN−1lN)KN |Ô(Lqρ sin θN)|(KN−1l
′
N )K ′

N〉 =

= N (αβ)
n N (α′β′)

n′

∫ π
2

0

dθN sin2 θN cos3N−4 θN

× sinlN θN cosKN−1 θNP
(αβ)
n (cos 2θN )

×Ô(Lqρ sin θN ) sinl′N θN cosKN−1 θNP
(α′β′)
n′ (cos 2θN ) (E.10)

where N = A− 1, n =
K ′

N−KN−1−l′N
2

, α = lN + 1
2
, and β = KN−1 + 3N−5

2
.

I0 = 〈(KA−1lN)KN |jJ(Lqρ sin θN )|(KA−1l
′
N )K ′

N〉 (E.11)

I1 = 〈(KA−1lN)KN |jJ(Lqρ sin θN)
1

Lqρ sin θN

|(KA−1l
′
N )K ′

N〉 (E.12)

I2 = 〈(KA−1lN )KN |jJ(Lqρ sin θN )
d

d(Lqρ sin θN )
|(KA−1l

′
N )K ′

N〉 (E.13)

using the fact that

d

d sin θN

(
sinlN θN cosKN−1 θNP

(αβ)
n (cos 2θN )

)
=

= sinlN θN cosKN−1 θNP
(αβ)
n (cos 2θN )

×
[

lN
sin θN

− KN−1 sin θN

cos2 θN
+

2n(n + β)

(2n+ α + β) sin θN cos2 θN
− 2n

sin θN

cos2 θN

]

−2(n+ α)(n+ β)

2n+ α + β
sinlN−1 θN cosKN−1−2 θNP

(αβ)
n−1 (cos 2θN) (E.14)

We can now calculate numerically the integrals above.

E.1 2-Body Matrix Elements

The 2-body matrix elements needed for the evaluation of the axial MEC include

several operators, whose reduced matrix elements are not completely trivial.

A much needed equalities are the following reduced matrix elements, important
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also for the isospin part, of pauli matrices:

〈(1
2

1

2
)S ′||~σ1 + ~σ2||(

1

2

1

2
)S〉 = δS,S′

√
S(S + 1)(2S + 1) (E.15)

〈(1
2

1

2
)0||~σ1 − ~σ2||(

1

2

1

2
)1〉 = −〈(1

2

1

2
)1||~σ1 − ~σ2||(

1

2

1

2
)0〉 = −2

√
3 (E.16)

〈(1
2

1

2
)0||~σ1 × ~σ2||(

1

2

1

2
)1〉 = 〈(1

2

1

2
)1||~σ1 × ~σ2||(

1

2

1

2
)0〉 = −2

√
3i. (E.17)

These are used both for the spin and isospin operators.

By making use of the known spherical harmonics coupling:

[Y (l1) ⊗ Y (l2)](l)m = (−)l1−l2

√
[l1][l2]

4π

(
l1 l2 l

0 0 0

)
Y (l)

m (E.18)

(here [l] = 2l + 1) we can achieve the following formula,

〈(L′S ′)J ′||[Y1 ⊗ (~σ1 ⊙ ~σ2)
(1)](0)YL||(LS)J〉 =

= (−)J+J ′+L+L′+S+S′

√
[L′][J ′][L][L][J ]

4π
〈S ′||~σ1 ⊙ ~σ2||S〉

∑

L′′

[L′′]

(
L′′ L L

0 0 0

){
L′′ L L

J S ′ J ′

}(
L′′ 1 L′

0 0 0

){
L′′ 1 L′

S ′ J ′ S

}

Thus,

~Oa
⊙ · ~YJLM = (~τ (1) ⊙ ~τ (2))a[~Σ⊙ ⊗ YL]

(J)
M (E.19)

~T a
⊙ · ~YJLM = (~τ (1) ⊙ ~τ (2))a

{
(−)L

√
4π[L]

(
1 L J

0 0 0

)
[~Σ⊙ ⊗ Y1]

(0)YJM −
1

3
[~Σ⊙ ⊗ YL]

(J)
M

}

(E.20)

where ~Σ⊙ = ~Σ1 ⊙ ~Σ2, for ⊙ = ×,+,−.
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Nogga, A., Kievsky, A., Kamada, H., Glöckle, W., Marcucci, L. E., Rosati, S., and

Viviani, M.: 2003, Phys. Rev. C 67(3), 034004

Nogga, A., Timmermans, R. G. E., and van Kolck, U.: 2005, Phys. Rev. C 72(5),

054006



BIBLIOGRAPHY 124

Novoselsky, A., Katriel, J., and Gilmore, R.: 1988, Journal of Mathematical Physics

29, 1368

O’Connor, E., Gazit, D., Horowitz, C. J., Schwenk, A., and Barnea, N.: 2007, Phys.

Rev. C 75, 055803

Ohnishi, N., Kotake, K., and Yamada, S.: 2006, Inelastic Neutrino-Helium Scatter-

ings and Standing Accretion Shock Instability in Core-Collapse Supernovae
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