Pragmatic Lessons from χPT on lowenergies weak current in nuclei

Doron Gazit Institute for Nuclear Theory

Slide 1 of 259

Collaborators in some of the works shown

- ICTP: H.-U. Yee
- HUJI: N. Barnea, S. Vaintraub
- LLNL: S. Quaglioni, P. Navratil

Introduction

- **On the verge** of a precision era in few-body nuclear physics:
 - Available methods for solving exactly the Schrödinger equation for few body systems, from their nucleonic degrees of freedom:
 - No core shell model.
 - Expansions in Hyperspherical Harmonics.
 - High precision nuclear interaction, phenomenological or χPT based:
 - Spectra of light nuclei.
 - Transitions and cross-sections.
- Will allow *parameter free* calculations of nuclear wave functions and low-energy reaction rates, with sub-percentage accuracy.
- How can we use this to gain understanding on interesting problems?

April 3, 2009

Light Nuclei

Outline

- Using χ PT for calculating low-energy weak reactions.
- Applications:
 - Constraining the nuclear force using triton β -decay and an inside look into correlations in the nucleus.
 - β -decay of ⁶He a difference between standard nuclear physics approach and χ PT approach.
 - "Unexpected" success at higher energies: weak structure of the nucleon from μ -capture on ³He.
 - Predictive force: Neutrino reactions with light nuclei in Supernovae.
- Weak interaction in Holographic QCD: *easy access to the size* of low-energy constants.

χ PT approach for low-energy EW nuclear reactions:

Effective Field Theory for low energy QCD

- We are aiming at energies which are relevant for nuclear phenomena – well below QCD breaking scale ~ 1 GeV.
- The constituent quarks are the up and down quarks.
- Their masses are small with respect to the QCD scale. $m_u=2\pm1\,{
 m MeV}$ and $m_d=5\pm2\,{
 m MeV}$
- QCD Lagrangian with only the up and down quarks of vanishing mass: $\mathcal{L}_{QCD}^{q} = i\overline{q}\gamma^{\mu}\mathcal{D}_{\mu}q = i\overline{q}_{R}\gamma^{\mu}\mathcal{D}_{\mu}q_{R} + i\overline{q}_{L}\gamma^{\mu}\mathcal{D}_{\mu}q_{L}$

$$q = \begin{pmatrix} u \\ R \\ R \end{pmatrix}; q_{L,R} \equiv \frac{1}{2} (1 \pm \gamma_5) q$$

April 3, 2009

Effective Field Theory for low energy QCD

• Clearly, the QCD Lagrangian is invariant under:

 This is an approximate symmetry of the Lagrangian due to the mass term:

$$M_{q} = \begin{pmatrix} m_{u} & 0 \\ 0 & m_{d} \end{pmatrix} = \frac{1}{2} (m_{u} + m_{d})I + \frac{1}{2} (m_{u} - m_{d})\tau_{3}$$

$$\underbrace{\int_{breaks SU(2)_{V}}}_{breaks SU(2)_{A}}$$

- This creates deviations of the order $\frac{m_u \pm m_d}{M_N}$

Effective Field Theory for low energy QCD

- If this was a symmetry of the vacuum, there were approximate parity doublets in the QCD spectrum. However,
 - Nucleons of positive parity: p(½⁺,938.3), n(½⁺,939.6), I= ½
 - Nucleons of negative parity N($\frac{1}{2}$,1535), I= $\frac{1}{2}$.
 - Mesons of Isospin 1: $\rho(1^-,770)$ and $a_1(1^+,1260)$
- Masses are very different → No parity doublets in the spectrum.

Conclusion: The chiral symmetry is *spontaneously* broken

- The Goldstone-Nambu spin zero bosons are the pions:
 - They are not massless due to the explicit symmetry breaking, though -

$$\xi = \exp\left(i\frac{\vec{\pi}\cdot\vec{\tau}}{2f_{\pi}}\right)$$

 m_{π}

 ≈ 0.02

Transformation rules:

- Goldstone's theorem states that $U \equiv \xi^2$, belongs to the $(\overline{2},2)$ representation of SU(2)_LxSU(2)_R: $U \rightarrow LUR^{\dagger}$
- A nonlinear realization of the symmetry (as $U^{\dagger}U = 1$, |U| = 1).
- The resulting transformation rules: $h \in SU(2)_{V}$

$$\begin{split} N &\mapsto hN \\ \xi &\mapsto L\xi h^{\dagger} = h\xi R^{\dagger} \end{split}$$

• Invariant terms: $\overline{N}N, \ \overline{N}\gamma^{\mu}D_{\mu}N, \ \overline{N}\gamma^{\mu}\gamma_{5}a_{\mu}N$ with :

with:

$$D_{\mu} = \partial_{\mu} + iv_{\mu}$$

$$v_{\mu} = -\frac{i}{2} \left(\xi \partial_{\mu} \xi^{\dagger} + \xi^{\dagger} \partial_{\mu} \xi \right); \quad a_{\mu} = -\frac{i}{2} \left(\xi \partial_{\mu} \xi^{\dagger} - \xi^{\dagger} \partial_{\mu} \xi \right)$$

Effective field theory (EFT) for nuclear physics: Chiral perturbation theory (χPT)

• Symmetries are important *NOT* degrees of freedom:

• In QCD – an approximate chiral symmetry:

$$SU(2)_L \times SU(2)_R \cong SU(2)_V \times SU(2)_A \rightarrow SU(2)_V$$

- Pions Goldstone bosons of the broken symmetry.
- Choose Λ the cutoff of the theory. (400-800 MeV)
- Identify Q the energy scale of the process. (around 100 MeV)
- In view of Q and Λ -Identify the relevant degrees of freedom. (pions and nucleons).
- Write all the possible operators which agree with the symmetries of the underlying theory (INFINITE)
- Calculate Feynman diagrams (INFINTE)
- Find a systematic way to organize diagrams according to their contribution

Weinberg's Power Counting Scheme

- Each Feynman diagram can be characterized by: $\left(\frac{Q}{\Lambda}\right)^{r}$
- Q~100 MeV is the relevant momentum of the process or pion masses in the diagram.
- $\Lambda_{\chi} \sim 1 \text{ GeV}$ is the chiral symmetry breaking scale.
- Weinberg showed: $v \ge 0$

Chiral Perturbation Theory

• In addition, expand in the nucleon's mass (take $\bigwedge_{April \chi_{2009}} \sim M_N$) \rightarrow Heavy Baryon χPT .

The power counting

The Lagrangian we use

 $\mathcal{L} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{NN}$ • Pion Lagarngian: $\mathcal{L}_{\pi\pi}^{(2)} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[\partial_{\mu} U \partial^{\mu} U^{\dagger} + m_{\pi}^2 \left(U + U^{\dagger} \right) \right]$

• Nucleon-Pion Lagrangian: $\mathcal{L}_{\pi N}^{(2)} = \bar{N} \{ i \gamma_{\mu} \mathcal{D}^{\mu} + g_A \gamma^{\mu} \gamma_5 a_{\mu} - M_0 \} N$

$$\delta_1 \mathcal{L}_{\pi N}^{(3)} = \frac{2\hat{c}_3}{M_N} \bar{N} N \operatorname{Tr} \left(\mathbf{a}_\mu \mathbf{a}^\mu \right)$$
$$\delta_2 \mathcal{L}_{\pi N}^{(3)} = i \frac{\hat{c}_4}{M_N} \bar{N} [a_\mu, a_\nu] \sigma^{\mu\nu} N,$$

- Nucleon-Nucleon contact terms.
 - Allowed, and also needed to remove divergences.
 - Represent short range correlations.

$$\mathcal{L}_4 = -2D_1 \left(\bar{N} \gamma^\mu \gamma_5 a_\mu N \right) \left(\bar{N} N \right)$$

INT program - EFTs and MBP

ab initio methods to solve the Schrödinger equation

- Expanding the wave functions in a known basis to get an exact solution to the equation.
- Using effective interaction approach to accelerate the convergence (mainly for A>3).

Hyperspherical Harmonics (EIHH)

- Correct long range behavior.
- Difficult to antisymmetrize.

No Core Shell Model (NCSM)

- Incorrect long range behavior.
- Antisymmetrization easier.
- Rather indifferent to local/ nonlocal forces.

A_{max}~7, reactions,

A_{max}~15, spectra

Barnea, Leidemann, Orlandini, **Phys. Rev. C**, **63** 057002 (2001). April 3, 2009 Navratil, Vary, Barrett, **Phys. Rev. Lett.**, **84** 5728 (2000).

Benchmark calculation of a four body bound state with a realistic NN potential AV8'

Method	E _b [MeV]	Matter radius [fm]
FY	25.94(5)	1.485(3)
CRCGV	25.90	1.482
SVM	25.92	1.486
HH	25.90(1)	1.483
GFMC	25.93(3)	1.490(5)
NCSM	25.80(20)	1.485
EIHH	25.944(10)	1.486

Kamada et al, Phys. Rev. C 64, 044001 (2001)

Calculation of ⁴He bound state with *state of the art* NN+NNN potentials AV18+UIX

E_{exp}=28.296 MeV

	E _b [MeV]	Matter radius [fm]
EIHH [DG et. al]	28.418	1.432
FY [Nogga et. al]	28.50	
HH [Viviani et. al]	28.46	1.428
GFMC [Wiringa et. al]	28.34	1.43

DG, Bacca, Branea, Leidemann, Orlandini, Phys. Rev. Lett. 96, 112301 (2007)

Doron Gazit

APIII 3, 2003

0 - 100

100 - 190

190 - 290

0 - 290

3 nucleon forces at N²LO

Attempts to calibrate the contact parameters

Other attempts were to use 3 nucleon scattering lengths as a second observable.

The problem is the cross-correlation of the different observables.

Navratil et al, Phys. Rev. Lett. 99, 042501 (2007).

Weak interaction with the nucleus

Weak currents in the nucleus

- The standard model dictates only the structure of the currets:
 - Charged current $\mathcal{J}^{(\pm)}_{\mu} = \frac{\tau_{\pm}}{2} \left(J^{V}_{\mu} + J^{A}_{\mu} \right)$

- Neutral current: $\mathcal{J}_{\mu}^{(0)} = (1 - 2 \cdot \sin^2 \theta_W) \frac{\tau_0}{2} J_{\mu}^V + \frac{\tau_0}{2} J_{\mu}^A - 2 \cdot \sin^2 \theta_W \frac{1}{2} J_{\mu}^V$

- The current of polar (axial) vector symmetry is the Noether current of the QCD Lagrangian, with respect to SU(2)_V [SU(2)_A] symmetry.
- Includes:
 - single nucleon currents.
 - Meson exchange currents.

Weak Currents in the Nucleus from $\chi \textrm{PT}$

- $SU(2)_L xSU(2)_R$ is the gauging of the weak force.
- Weak currents are thus the Nother current of this symmetry.

$$\mathcal{J}^{a\mu} \equiv -\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\epsilon^{a}(x))}$$

- In χPT:
 - Single nucleon currents come at leading order (and receive momentum dependent corrections at higher orders).
 - Meson exchange currents start at N²LO.

T.-S. Park et al, Phys. Rev. C 67, 055206 (2003); DG PhD thesis arXiv: 0807.0216

$$\hat{J}^{\mu V} = \overline{u}(p') \begin{bmatrix} F_V(q^2) \gamma^{\mu} + \frac{i}{2M_N} F_M(q^2) \sigma^{\mu \nu} q_{\nu} + \frac{g_s}{m_{\mu}} q^{\mu} \end{bmatrix} u(p)$$
Vector
Magnetic
Second class currents
$$\hat{J}^{\mu A} = -\overline{u}(p') \begin{bmatrix} G_A(q^2) \gamma^{\mu} \gamma_5 + \frac{g_P(q^2)}{m_{\mu}} \gamma_5 q^{\mu} + \frac{ig_r}{2M_N} \sigma^{\mu \nu} \gamma_5 q_{\nu} \end{bmatrix} u(p)$$
Axial
Induced
Pseudo-Scalar

- q dependence is due to pion loops.
- Second class currents vanish to this order!

Meson Exchange currents

- Vector currents, protected by charge conservation (or CVC), do not include contact parameters, up to fourth order.
- Axial currents are more complicated, in configuration space:

CONSTRAINING THE NUCLEAR FORCE USING ³H BETA-DECAY

DG, S. Quaglioni, P. Navratil, arxiv: 0812.4444.

April 3, 2009

INT program - EFTs and MBP

Nuclear Matrix Elements

• A multipole decomposition of the currents is very helpful:

$$\hat{C}_{JM}(q) = \int d\vec{x} j_J(qx) Y_{JM}(\hat{x}) \hat{\mathcal{J}}_0(\vec{x})$$
$$\hat{E}_{JM}(q) = \frac{1}{q} \int d\vec{x} \vec{\nabla} \times [j_J(qx) \vec{Y}_{JJM}(\hat{x})] \cdot \hat{\vec{\mathcal{J}}}(\vec{x})$$
$$\hat{M}_{JM}(q) = \int d\vec{x} j_J(qx) \vec{Y}_{JJM}(\hat{x}) \cdot \hat{\vec{\mathcal{J}}}(\vec{x})$$
$$\hat{L}_{JM}(q) = \frac{i}{q} \int d\vec{x} \vec{\nabla} [j_J(qx) Y_{JM}(\hat{x})] \cdot \hat{\vec{\mathcal{J}}}(\vec{x})$$

 Usually, the low energy and selection rules mean that only a small number of multipoles contribute.

$$\beta \text{ decay rate for } q \rightarrow 0$$

$$(fT_{1/2})_t = \frac{K/(G^2|V_{ud}|^2)}{|\mathbf{F}|^2 + \frac{f_A}{f_V}g_A^2|\mathbf{GT}|^2}.$$

$$\mathbf{F} \equiv \sqrt{\frac{4\pi}{2\mathbf{J}_i + 1}} \langle \mathbf{C}_0^{\mathsf{V}} \rangle$$

$$\mathbf{GT} \equiv \sqrt{\frac{6\pi}{2\mathbf{J}_i + 1}} \frac{\langle \mathbf{E}_1^{\mathsf{A}} \rangle}{|\mathbf{g}_{\mathsf{A}}|}$$

- At the leading order: $GT|_{LO} = \sum \tau_i^* \vec{\sigma}_i$
- This is the origin of the commonly used name: experimental (empirical) Gamow-Teller.
- For the triton β -decay:

$$E_1^A \rangle \Big|_{emp} = 0.6848 \pm_{exp} 0.0007 (\pm_{g_A} 0.0007)$$

Akulov, Mamyrin, **Phys. Lett. B 610**, 45 (2005) Simpson, **Phys. Rev. C 35**, 752 (1987) Schiavilla, **Phys. Rev. C 58**, 1263 (1998)

April 3, 2009

30

Not all is good yet...

- What is the correct way to do a consistent calculation?
- Checked only with a specific χ PT Force:
 - No cutoff dependence.
 - Well, we just talked about that for 2 weeks...
- What is the effect of the missing 3NF diagrams?
- p-shell nuclei seem to suggest c_D^{-1} .
 - Renormalizing effect of the missing 3NF?
 - Numerical problems when calculating p-shell nuclei?
- There is still uncertainty, due to poorly known LECs (c_4) :
 - Still has to be checked consistently.
- •
- •

What can we learn about correlations in the wave function?

The apparent conclusion

- For GT type of operators, the short range correlations in the wave functions are not important for the observable.
- Is this the origin of the success of EFT*: hybrid calculations of weak reactions, using phenomenological forces in combination with χPT based currents?
 - One unknown parameter in MEC (d_R) calibrated using the triton half-life.

EFT* approach for low-energy nuclear reactions:

WHAT CAN WE LEARN FROM ⁶HE BETA-DECAY ABOUT THE SUPPRESSION OF G_A IN NUCLEAR MATTER? SNPA VS. EFT BASED MEC?

•Surveys of "empirical Gamow-Teller" show that $g_A \rightarrow 1$, as A grows.

•This has been related to:

•Restoration of axial symmetry.

•Lack of correlations in the calculation.

•Loop corrections from nucleonic excitations.

•Something beyond the standard model?

•Schiavilla and Wiringa showed that for ⁶He, the suppression is about 4%. The MEC actually increased the suppression!!

•A real effect?

•Problems in the weak current?

DG, S. Vaintraub, N. Barnea, arXiv:0903.1048 (2009).
What does it mean $g_A \rightarrow 1$?

- Take the experimental value of the half life.
- Extract the empirical GT.
- Calculate GT via shell model (assumes LO, sometimes RC are added).
- The ratio between GT(shell model) and GT(emp) is g_A.
- Plot g_A as a function of the nuclear mass A.

Calculation Approach (1)

- I apologize, but we have to use a hybrid approach:
 - JISP16 NN potential is used to calculate the ground states WF of ⁶He, ⁶Li, ³H, ³He.
 - EFT based MEC.
- Calculate the ³H decay rate, as a function of d_R for various cutoff values.
- Calibrate $d_R(\Lambda)$ by fitting the half life of ³H to the experimental.

	³ H		$^{3}\mathrm{He}$		
K_{max}	B.E.	radius	B.E.	radius	$GT _{LO}$
4	8.094	1.632	7.364	1.653	1.6656
6	8.233	1.656	7.512	1.680	1.6620
8	8.319	1.677	7.604	1.704	1.6575
10	8.351	1.691	7.641	1.720	1.6547
12	8.360	1.697	7.651	1.727	1.6538
14	8.365	1.701	7.657	1.733	1.6530
16	8.367	1.704	7.660	1.736	1.6526
18	8.367	1.705	7.661	1.738	1.6524
$[20]_V$	8.354		7.648		
$[20]_{E}$	8.496(20)		7.797(17)		
Exp.	8.482		7.718		

Potential model	GT _{LO}
AV18+3NF [32]	1.598(2)
Bonn+3NF [33]	1.621(2)
Nijm+3NF [34]	1.605(2)
JISP16 [This work]	1.6524(2)
Expt.	1.656(3)

$$\begin{split} \hat{d}_r(\Lambda_\chi &= 500 \text{ MeV}) &= 0.583(27)_t(38)_{g_A} \\ \hat{d}_r(\Lambda_\chi &= 600 \text{ MeV}) &= 0.625(25)_t(35)_{g_A} \\ \hat{d}_r(\Lambda_\chi &= 800 \text{ MeV}) &= 0.673(23)_t(33)_{g_A}. \end{split}$$

INT program - EFTs and MBP

Calculation Approach (2)

• Calculate 6-body WF and GT.

Calculation Approach (3)

- Add MEC at various cutoffs, and predict: $|GT(^{6}He)|_{theo} = 2.198(1)_{\Lambda}(2)_{N}(4)_{t}(5)_{g_{\Lambda}} = 2.198 \pm 0.007$
- Compare to experiment:

Potential	1-Body	Full	
AV18/UIX – VMC	2.250(7)	2.281(7)	
JISP16	2.225(2)	2.198(7)	
Experiment		2.161(4)	

- Remark on the origin of difference.
- Hope for the best ;)

Things to resolve

- Is there a qualitative difference between the SNPA based MEC and the EFT based MEC?
- Is this difference a result of the use of a too simplistic NN potential (JISP16)?
- In any case, with this calculation the experimental 6-body half life is reproduced.

$$\frac{g_A(^6\text{He})}{g_A(n)} = 0.983 \pm 0.01$$

SNPA vs. χ PT based MEC...

• SNPA based MEC have the following form:

T program - E

$$A^{a} = A_{I}^{a} + A_{II}^{a}$$

$$\equiv [A^{a}(\Delta \pi) + A^{a}(\pi \rho) + A^{a}(\pi S)]$$

$$+ [A^{a}(\Delta \rho) + A^{a}(\rho S)],$$

$$A_{I}^{a} = \frac{g_{A}}{2m_{N}f_{\pi}^{2}} \left\{ -\frac{4}{25}g_{A}^{2}I_{1}\frac{m_{N}}{m_{\Delta}-m_{N}}\mathcal{R}_{\pi}^{2}(k_{2}) \right.$$

$$\times [4\tau_{2}^{a}k_{2} - (\vec{\tau}_{1} \times \vec{\tau}_{2})^{a}\sigma_{1} \times k_{2}]$$

$$- \frac{I_{2}}{4}\mathcal{R}_{\rho}(k_{1})\mathcal{R}_{\pi}(k_{2})\frac{m_{\rho}^{2}}{m_{\rho}^{2} + k_{1}^{2}}$$

$$\times (\vec{\tau}_{1} \times \vec{\tau}_{2})^{a}[(1+\kappa)\sigma_{1} \times k_{1} - 2i\vec{p}_{1}]$$

$$+ \frac{I_{1}}{4}g_{A}^{2}\mathcal{R}_{\pi}^{2}(k_{2})[(\vec{\tau}_{1} \times \vec{\tau}_{2})^{a}\sigma_{1} \times k_{2}]$$

$$- \tau_{2}^{a}(-q + 2i\sigma_{1} \times \vec{p}_{1})] \left\} \frac{\sigma_{2} \cdot k_{2}}{m_{\pi}^{2} + k_{2}^{2}} + (1 \leftrightarrow 2) \right]$$

$$1 \leftrightarrow I_2 \mathcal{R}_{\rho}(\mathbf{k}_1) \mathcal{R}_{\pi}(\mathbf{k}_2) \frac{m_{\rho}^2}{m_{\rho}^2 + \mathbf{k}_1^2}, \qquad (A24)$$

$$\hat{c}_{3} \leftrightarrow -\frac{8}{25} g_{A}^{2} I_{1} \frac{m_{N}}{m_{\Delta} - m_{N}} \mathcal{R}_{\pi}^{2}(k_{j}), \qquad (A25)$$

$$\hat{c}_4 + \frac{1}{4} \leftrightarrow \frac{4}{25} g_A^2 I_1 \frac{m_N}{m_\Delta - m_N} \mathcal{R}_{\pi}^2(k_j)$$

$$+I_2 \mathcal{R}_{\rho}(\mathbf{k}_1) \mathcal{R}_{\pi}(\mathbf{k}_2) \frac{m_{\rho}^2}{m_{\rho}^2 + \mathbf{k}_1^2} \frac{1+\kappa}{4},$$
(A26)

 $\hat{c}_3 = (-5.58 \pm 0.08, -5.49 \pm 0.01, -5.82 \pm 0.08)$

 $\hat{c}_4 = (3.26 \pm 0.05, 3.29 \pm 0.01, 3.30 \pm 0.04).$

N³LO: $\hat{c}_3 = -4.96 \pm 0.23$,

 $\hat{c}_4 = 3.40 \pm 0.09.$

Difference arise in the contact interaction and calibration

$$A^{a}(\rho\Delta) = \frac{g_{A}}{2m_{N}f_{\pi}^{2}} I_{2} \frac{(1+\kappa)^{2}}{50m_{N}(m_{\Delta}-m_{N})} \mathcal{R}^{2}_{\rho}(k_{2}) \frac{m_{\rho}^{2}}{m_{\rho}^{2}+k_{2}^{2}}$$
$$\times [4\tau_{2}^{a}(\boldsymbol{\sigma}_{2}\times\boldsymbol{k}_{2})\times\boldsymbol{k}_{2}-(\vec{\tau}_{1}\times\vec{\tau}_{2})^{a}\boldsymbol{\sigma}_{1}$$
$$\times [(\boldsymbol{\sigma}_{2}\times\boldsymbol{k}_{2})\times\boldsymbol{k}_{2}]] + (1\leftrightarrow2). \tag{A35}$$

- This term is N⁵LO.
- No operator in SNPA corresponds to the EFT contact interaction.
- Calibration of MEC is done in the 3-body level, by calibrating $g_{\pi N\Delta}$, which in EFT just contributes to c_3 .

Different contributions to the decay

Conclusions

- The ⁶He beta decay was used as a test case for the weak currents. The calculation is essentially "without free parameters".
- A reliable calculation of the WF, has been accomplished, using JISP16 potential.
- A qualitative difference was found between the MEC contribution in SNPA and in χ PT, originating in the contact interaction.
 - Would be interesting to see what would be the effect on heavier nuclei.
- Good agreement with experiment was found (1.7% difference compared with 5.4% in SNPA).
- A consistent calculation within χ PT is the next step.

EXTRACTING THE WEAK STRUCTURE OF THE NUCLEON FROM μ-CAPTURE ON ³HE

DG, Phys. Lett. B 666, 471 (2008).

Doron Gazit - JLab Theory seminar

The decay of a muonic ³He: *competition*

- The rates become comparable for Z~10.
- The Z⁴ law has deviations mainly due to nuclear effects.
- In order to probe the weak structure of the nucleon, one has to keep the nuclear effects under control.

Why don't we stay in the single nucleon level?

The MuCap collaboration (PSI) measuring:

 $\Gamma(\mu^{-}p \rightarrow \nu_{\mu}n)_{1S}^{\text{singlet}} = 725.0 \pm 13.7_{stat} \pm 10.7_{syst} \text{Hz}$

Expecting to achieve 1% accuracy.

For the (exclusive) process ${}^{3}\text{He}(\mu^{-},\nu_{\mu})$ ${}^{3}\text{H}$ an incredible measurement (±0.3%): $\Gamma(\mu^{-}+{}^{3}\text{He} \rightarrow \nu_{\mu}+t)_{stat} = 1496 \pm 4 \text{Hz}$

A parameter free, percentage level accuracy calculation of the process is a great challenge to nuclear physics – which is now possible!!

MuCap, Phys. Rev. Lett. 99, 032002 (2007).

Ackerbauer et al, Phys. Lett. B417, 224 (1998).

Previous results

- Ab-initio calculations, based on phenomenological MEC or Δ :
 - Congleton and Truhlik [PRC, 53, 956 (1996)]:
 1502±32 Hz.
 - Marcucci et. al. [PRC, 66, 054003(2002)]:
 1484±4 Hz.

Radiative corrections to the process

- Muon capture has prominent radiative corrections.
- Czarnecki, Marciano, Sirlin PRL 99, 032003 (2007), showed that radiative corrections increase the cross section by 3.0±0.4%.
- This ruins the good agreement of the old calculations.
- But...

Calculation:

• We take the phenomenological AV18 (NN) and UIX (NNN) nuclear forces.

	Method	Binding Energy [MeV] ³ H ³ He			
	EIHH	8.471(2)	7.738(2)		
	CHH	8.474	7.742		
	FY	8.470	7.738		
	Experimental	8.482	7.718		
$\Gamma = \left\{ \frac{2G^2 V_{ud} ^2 E_v^2}{2J_{^3}_{^{He}} + 1} \left(1 - \frac{E_v}{M_{^3}_{^{H}}} \right) \psi_{^{1s}} ^2 \Gamma_N \right\} (1 + RC)$					
$\Gamma = 1499(2)_{\Lambda}(3)_{NM}(5)_{t}(6)_{RC} = 1499 \pm 16 \text{ Hz}$					
$\Gamma_{EXP} = 1496 \pm 4 \mathrm{Hz}$					

CONSTRAINTS ON THE WEAK STRUCTURE OF THE NUCLEON FROM MUON CAPTURE ON ³HE

$$\hat{J}^{\mu\nu} = \overline{u}(p') \left[F_V(q^2) \gamma^{\mu} + \frac{i}{2M_N} F_M(q^2) \sigma^{\mu\nu} q_{\nu} + \frac{g_S}{m_{\mu}} q^{\mu} \right] u(p)$$

Vector

Second class currents

$$\hat{J}^{\mu A} = -\overline{u}(p') \left[G_A(q^2) \gamma^{\mu} \gamma_5 + \frac{g_P(q^2)}{m_{\mu}} \gamma_5 q^{\mu} + \frac{ig_t}{2M_N} \sigma^{\mu\nu} \gamma_5 q_{\nu} \right] u(p)$$
Axial Induced
Pseudo-Scalar

Doron Gazit - JLab Theory seminar

Induced pseudo-scalar:

- From χ PT [Bernard, Kaiser, Meissner, PRD 50, 6899 (1994); Kaiser PRC 67, 027002 (2003)]: $g_P(-0.954m_{\mu}^2) = 7.99(0.20)$
- From muon capture on proton [Czarnecki, Marciano, Sirlin, PRL 99, 032003 (2007); V. A. Andreev et. al., PRL 99, 032004(2007)]:

$$g_P(-0.88m_{\mu}^2) = 7.3(1.2)$$

• This work:

$$g_{P}(-0.954m_{\mu}^{2}) = 8.13(0.6)$$

$$g_{P}(q^{2}) = \frac{2m_{\mu}g_{\pi pn}f_{\pi}}{m_{\pi}^{2} - q_{\mu}^{2}} - \frac{1}{3}g_{A}m_{\mu}M_{N}\langle r_{A}^{2} \rangle = 7.99(20)$$

Induced Tensor:

• From QCD sum rules:

$$\frac{g_t}{g_A} = -0.0152(53)$$

• Experimentally [Wilkinson, Nucl. Instr. Phys. Res. A 455, 656 (2000)]: $\left|\frac{g_t}{g_A}\right| < 0.36 \text{ at } 90\%$

• This work:

$$\frac{g_t}{g_A} = -0.1(0.68)$$

 $\delta J^{\mu A} = \frac{ig_t}{2M_N} \sigma^{\mu\nu} \gamma_5 q_\nu$

Doron Gazit - JLab Theory seminar

Induced scalar (limits CVC):

"Experimentally" [Severijns et. al., RMP 78, 991 (2006)]: g_s = 0.01 ± 0.27

• This work: $g_s = -0.005 \pm 0.04$

$$\delta J^{\mu V} = \frac{g_S}{m_{\mu}} q^{\mu}$$

Using string theory to calculate and constrain low-energy weak reactions in the real world.

WEAK INTERACTING HOLOGRAPHIC QCD

DG, Ho-Ung Yee, Phys. Lett. B 670, 154 (2008).

Doron Gazit - JLab Theory seminar

Large N QCD has a dual classical theory in 5-D?!

- Large N factorization of gauge invariant theories: $\langle O_1(x_1)O_2(x_2)\cdots O_n(x_n)\rangle = \langle O_1(x_1)\rangle\langle O_2(x_2)\rangle\cdots\langle O_n(x_n)\rangle + O(\frac{1}{N^2})$
 - Implies a classical theory for gauge invariant operators (AKA master fields).
- RG running survives the large N limit, thus the master field is a function of the energy scale:

 $\langle O(x) \rangle (\mu)$

- The RG equations constrain flow in this scale
- Holographic QCD is a gravitational theory of gauge invariant fields in 5 dimensions.
 - 5th dimension corresponds roughly to the energy scale.

Things that we know

AdS/CFT Duality proposal $\mathcal{N}=4$ Super Yang-Mills theory in $(3+1)\mathcal{D}= \int_{\mathcal{S}_{YM}} \int_{\mathcal{N}_{C}} N_{c} \rightarrow \infty$, $g_{YM} \rightarrow 0$ and fixed but large is equivalent to

We thus expect the dual theory of QCD...

- In the UV regime: highly nonlocal, corresponding to asymptotic freedom.
- In the IR regime: local, corresponding to the strongly correlated QCD.
- Thus, current models of Holographic QCD model the gravitational dual as a local theory.
- Properties of existing models of Holographic QCD:
 - Chiral symmetry.
 - Confinement.
 - Explain experimental observables to 20%.

Low-energy Weak interaction

How to perturb the QCD Lagrangian?

Gauge

- Perturbation to the Lagrangian.
- Single trace operator *O*.
- A Lagrangian pertutbation:

$$\Delta \mathcal{L} = \int d^4 x f(x) \mathcal{O}(x)$$

Gravity

- Deforming boundary conditions of field near UV boundary.
- A 5D field, such that:
 - $\phi_{\mathcal{O}}(x^{\mu},z) \underset{z \to \infty}{\sim} c_1(x^{\mu}) z^{-\Delta_-} + c_2(x^{\mu}) z^{-\Delta_+}$
- Boundary conditions:

$$c_1(x) = f(x)$$
$$c_2(x) = \langle \mathcal{O}(x) \rangle$$

62

Doron Gazit - JLab Theory seminar

For a general functional perturbation of a single trace operator

$$\Delta \mathcal{L} = \int d^4 x F[\mathcal{O}(x)] \qquad c_1(x) = \frac{\delta F[\mathcal{O}]}{\delta \mathcal{O}} \bigg|_{\mathcal{O} \to c_2(x)}$$
$$c_2(x) = \langle \mathcal{O}(x) \rangle$$

The idea is general enough to implement in any Holographic Model. We demonstrated on two models:

Top – Down Model: Sakai-Sugimoto Model

Bottom – Up Model: Hard/Soft Wall Model.

IMPLEMENTATION

How to calculate different reactions?

- Write equation of motion for the global gauge field (i.e. the U(N_F) current).
- Solve it with the *prescribed* boundary conditions.
- If you'd like pions to be involved, do it by gauge fixing A_z . $A_z(+\infty) = \frac{1}{\sqrt{\pi\kappa}} \cdot \frac{\pi(x)}{1+z^2}$
- For reactions that include nucleons, choose a model for baryons, and calculate baryon-pion coupling from the kinetic term, and from magnetic type of couplings:

$$S = i \int d^4x \int d\omega \left[\overline{\mathcal{B}} \gamma^M \left(\partial_M - i A_M \right) \mathcal{B} - m_{\mathcal{B}} \left(\omega \right) + C \overline{\mathcal{B}} \sigma^{MN} F_{MN} \mathcal{B} + \dots \right]$$

Neutron b-decay

Sakai-Sugimoto

$$\mathcal{L}_{\overline{n}pe^{-}\overline{v}_{e}} = \sqrt{2}G_{F} \Big[\overline{n}\gamma_{\mu}p + g_{A} \Big(\eta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}} \Big) \overline{n}\gamma^{\nu}\gamma_{5}p - \frac{i(0.84)\overline{n}q^{\nu}\sigma_{\mu\nu}p \Big] \cdot \Big(\overline{v}_{L}\gamma^{\mu}e_{L} \Big)$$

Hard/Soft wall model

$$\mathcal{L}_{\overline{n}pe^{-}\overline{v}_{e}} = \sqrt{2}G_{F} \Big[\overline{n}\gamma_{\mu}p + g_{A} \Big(\eta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}} \Big) \overline{n}\gamma^{\nu}\gamma_{5}p - i(0.48)D\overline{n}q^{\nu}\sigma_{\mu\nu}p \Big] \cdot \big(\overline{v}_{L}\gamma^{\mu}e_{L}\big)$$
With:

$$g_A = 1.3$$
 $g_A = 0.33 + 1.02D$
 $g_A^{exp} = 1.2695(29)$

Parity non-conserving pion-nucleon coupling

- First example without an external source.
- We are interested in parity violating couplings of mesons to the nucleons.
- To this end, we consider only charged pionnucleon coupling.
- In both models, the result in the zero q limit is identical to the current algebra result:

$$L_{N-\pi}^{weak} = -2G_F f_{\pi} (\overline{p}\gamma^{\mu}n) (\partial_{\mu}\pi^+)$$

• Still, a lot to be done!

Summary

- This is a prescription to include weak interactions in the framework of holographic QCD.
- Applicable up to energies of a few GeV, when strong coupling is still valid.
- We have shown its strength by using Sakai-Sugimoto and Hard/Soft wall models to calculate few exemplar reactions.
- The current approach, contrary to other approaches (such as χPT), gives not only the operator structure, but the numerical coefficients, to about 20%, and valid for energies above the chiral limit.

Final Remarks

- Weak reactions with light nuclei:
 - Can be used to study the basic symmetries of QCD.
 - Provide a hatch to the properties of heavier nuclei.
- Parameter free calculations, which will be done within χPT, would be able to constrain these observables.
 – For that, a microscopic calculation of LECs is needed.
- χPT, even at the current "phenomenological" level, can teach us a lot about the character of correlations in nuclei:
 - Different observables might depend differently on the short range physics.
 - Structure of weak MEC, from a more basic approach than a meson model.