Consistent Calculations of Electro-weak Reactions on Light Nuclei: Correlations, Currents and Applications

> Doron Gazit Institute for Nuclear Theory, University of Washington

Introduction and outline

- The modern approach to nuclear physics relies on effective field theory for QCD at low-energies: chiral perturbation theory (χ PT). Today, nuclear forces AND meson exchange currents were derived from χ PT.
- When fully developed, χ PT will allow consistent and parameter free checks of QCD within nuclear physics.
- Here, I will present a new approach to calibrate the chiral Lagrangian, using weak observable, namely the triton β -decay rate.
- Some consequences and resulting applications will be presented.

DG, Quaglioni, Navratil, in preparation.

Effective Field Theories

- An effective theory is supposed to be valid up to some energy scale Λ .
- The most important thing in a theory are its symmetries.
 - The most important thing in an effective theory is that it will agree with the symmetries of the fundamental theory.
- In view of these identify the relevant degrees of freedom.
- Write the most general Lagrangian consistent with the assumed symmetries. $\hat{L}_{eff} = \sum c_A \hat{L}_A$
 - c_A should be calibrated from experiments.
- Develop a perturbation scheme.

Effective field theory (EFT) for nuclear physics: Chiral perturbation theory (χPT)

- Symmetries are important *NOT* degrees of freedom:
 - In QCD an approximate chiral symmetry: $SU(2)_L \times SU(2)_R \cong SU(2)_V \times SU(2)_A \rightarrow SU(2)_V$
 - Pions Goldstone bosons of the broken symmetry.
- Choose Λ the theory cutoff. (400-800 MeV)
- Identify Q the energy scale of the process. (around 100 MeV)
- In view of Q and Λ -Identify the relevant degrees of freedom. (pions and nucleons).
- Write all the possible operators which agree with the symmetries of the underlying theory (INFINITE)
- Calculate Feynman diagrams (INFINTE)
- Find a systematic way to organize diagrams according to their contribution

Doron Gazit

TRIUMF, October 2008

Effective Field Theory for low energy QCD

- We are aiming at energies which are relevant for nuclear phenomena – well below QCD breaking scale ~ 1 GeV.
- The constituent quarks are the up and down quarks.
- Their masses are small with respect to the QCD scale.

$$m_u = 2 \pm 1 \text{ MeV} \text{ and } m_d = 5 \pm 2 \text{ MeV}$$

• QCD Lagrangian with only the up and down quarks of vanishing mass: $\mathcal{L}_{QCD}^{q} = i\overline{q}\gamma^{\mu}\mathcal{D}_{\mu}q = i\overline{q}_{R}\gamma^{\mu}\mathcal{D}_{\mu}q_{R} + i\overline{q}_{L}\gamma^{\mu}\mathcal{D}_{\mu}q_{L}$

$$q = \begin{pmatrix} u \\ d \end{pmatrix}; \ q_{L,R} \equiv \frac{1}{2} (1 \pm \gamma_5) q$$

Doron Gazit - TRIUMF thoery group seminar

December 2nd, 2008

Y

Effective Field Theory for low energy QCD

• Clearly, the QCD Lagrangian is invariant under:

• This is an approximate symmetry of the Lagrangian due to the mass term: $M_{q} = \begin{pmatrix} m_{u} & 0 \\ 0 & m_{d} \end{pmatrix} = \frac{1}{2} (m_{u} + m_{d})I + \frac{1}{2} (m_{u} - m_{d})\tau_{3}$ $\underbrace{I_{d} = (m_{u} - m_{d})T_{3}}_{breaks SU(2)_{V}}$

• This creates deviations of the order $\frac{m_i}{m_i}$

$$\frac{m_u \pm m_d}{M_N}$$

Doron Gazit - TRIUMF thoery group seminar

Effective Field Theory for low energy QCD

- If this was correct, even approximately, there were parity doublets in the QCD spectrum. However,
 - Nucleons of positive parity: $p(\frac{1}{2}^+,938.3)$, $n(\frac{1}{2}^+,939.6)$, $I = \frac{1}{2}$
 - Nucleons of negative parity N($\frac{1}{2}$, 1535), I= $\frac{1}{2}$.
 - Mesons of Isospin 1: $\rho(1^-, 770)$ and $a_1(1^+, 1260)$
- Masses are very different ightarrow No parity doublets in the spectrum.

Conclusion: The chiral symmetry is *spontaneously* broken

- The Goldstone-Nambu spin zero bosons are the pions:
 - They are not massless due to the explicit symmetry breaking, though $\left(\frac{m_{\pi}}{m_{N}}\right)^{2} \approx 0.02.$

 $\xi = \exp\left(i\frac{\vec{\pi}\cdot\vec{\tau}}{2f_{\pi}}\right)$

Transformation rules:

- Goldstone's theorem states that $U \equiv \xi^2$, belongs to the $(\overline{2},2)$ representation of $SU(2)_L x SU(2)_R$: $U \rightarrow LUR^{\dagger}$.
- A nonlinear realization of the symmetry (as $U^{\dagger}U = 1$, |U| = 1).
- The resulting transformation rules: $h \in SU(2)_{V}$

$$\begin{split} N &\mapsto hN \\ \xi &\mapsto L\xi h^{\dagger} = h\xi R^{\dagger} \end{split}$$

• Invariant terms: $\overline{N}N, \ \overline{N}\gamma^{\mu}D_{\mu}N, \ \overline{N}\gamma^{\mu}\gamma_{5}a_{\mu}N$ with: $D_{\mu} = \partial_{\mu} + iv_{\mu}$ $v_{\mu} = -\frac{i}{2}(\xi\partial_{\mu}\xi^{\dagger} + \xi^{\dagger}\partial_{\mu}\xi); \ a_{\mu} = -\frac{i}{2}(\xi\partial_{\mu}\xi^{\dagger} - \xi^{\dagger}\partial_{\mu}\xi)$

Doron Gazit - TRIUMF thoery group seminar

Weinberg's Power Counting Scheme

- Each Feynman diagram can be characterized by: $\left(\frac{Q}{\Lambda_{\gamma}}\right)^{r}$
- Q~100 MeV is the relevant momentum of the process or pion masses in the diagram.
- $\Lambda_{\gamma} \sim 1$ GeV is the chiral symmetry breaking scale.
- Weinberg showed: $v \ge 0$

In addition, expand in the nucleon's mass (take $\Lambda_{\gamma} \sim M_N$) \rightarrow Heavy Baryon χ PT. 10

Chiral Perturbation Theory

Doron Gazit - TRIUMF thoery group seminar

The power counting

Power = -2 + 2A - 2C + 2L + Δ_i all vertices with A = number of nucleons; C = number of separately connected pieces; L = number of loops; $\Delta_i = d_i + \frac{n_i}{2} - 2,$ where d_i = number of derivatives, n_i = number of nucleon operators.

Doron Gazit - TRIUMF thoery group seminar

December 2nd, 2008

The Lagrangian to fourth order $\mathcal{L} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{NN}$ • Pion Lagarngian: $\mathcal{L}_{\pi\pi}^{(2)} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[\partial_{\mu} U \partial^{\mu} U^{\dagger} + m_{\pi}^2 \left(U + U^{\dagger} \right) \right]$ • Nucleon-Pion Lagrangian: $\mathcal{L}_{\pi N}^{(2)} = \bar{N} \left\{ i \gamma_{\mu} \mathcal{D}^{\mu} + g_A \gamma^{\mu} \gamma_5 a_{\mu} - M_0 \right\} N$

$$\delta_1 \mathcal{L}_{\pi N}^{(3)} = \frac{2\hat{c}_3}{M_N} \bar{N} N \operatorname{Tr} \left(\mathbf{a}_\mu \mathbf{a}^\mu \right)$$
$$\delta_2 \mathcal{L}_{\pi N}^{(3)} = i \frac{\hat{c}_4}{M_N} \bar{N} [a_\mu, a_\nu] \sigma^{\mu\nu} N_3$$

- Nucleon-Nucleon contact terms.
 - Allowed, and also needed to remove divergences.
 - Represent short range correlations.

$$\mathcal{L}_4 = -2D_1 \left(\bar{N} \gamma^\mu \gamma_5 a_\mu N \right) \left(\bar{N} N \right)$$

The big deal in χPT

- A perturbation theory/expansion in small parameter of the observable, gives control over the accuracy of the calculation.
- Varying the cutoff gives estimate of the theoretical error-bar.
- Allows connection between *a-priori* not related operators.
- In particular the nuclear force and the electro-weak currents in the nucleus (that the SU(2)xSU(2) structure is a gauging of).
- The calculations are predictions of QCD.

Hierarchy of Nuclear Forces in χ PT

•Only contact terms cannot be calibrated in the pion or pion/nucleon system.

•The 2N terms are calibrated to reproduce phase shifts.

 $\chi^2/{
m datum}$ for the reproduction of the 1999 np database

Bin (MeV)	# of data	N ³ LO	NNLO	NLO	AV18
0–100	1058	1.06	1.71	5.20	0.95
100 - 190	501	1.08	12.9	49.3	1.10
190 - 290	843	1.15	19.2	68.3	1.11
0–290	2402	1.10	10.1	36.2	1.04

2N Force

3N Force

NNLO

Some remarks

- For now, only N2LO 3NF exist.
- Only for cutoff of 600 MeV.
- Clearly more work is called for!
- A good way to treat the cutoff dependence is to use the $V_{low k}$ approach (Bacca, Nogga, Schwenk, DG, in preparation).

Attempts to calibrate the contact parameters

Weak interaction with the nucleus $\hat{H}_{W} = -\frac{G_{F}V_{ud}}{\sqrt{2}} \int d^{3}\vec{x} \, \hat{j}_{\mu}^{+}(\vec{x})\hat{J}_{\mu}^{\mu-}(\vec{x})$ $P_f^i = \left(E_f, P_f \right)$ $\mathbf{k}_{2}^{i} = (\mathbf{k}_{2}, \mathbf{k}_{2})$ $q_0^2 = -0.954 m_\mu^2$ $q_0^\mu = (\omega, q)$ Lepton Nuclear current current W^{\pm}, Z^{0} $k_1^{\mu} = (m_{\mu}, 0)$ $\mathbf{P}_i^{\mathbf{i}} = \left(\mathbf{E}_{\mathbf{i}}, \mathbf{P}_{\mathbf{i}}\right)$ Scattering operator Currents in the nucleus $W \quad propagator = \frac{g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{M_W^2}}{q^2 + M_W^2} \xrightarrow{q << M_W} \frac{g_{\mu\nu}}{M_W^2}$ 20

Weak currents in the nucleus

- The standard model dictates only the structure of the currets:
 - Charged current $\mathcal{J}^{(\pm)}_{\mu} = \frac{\tau_{\pm}}{2} \left(J^{V}_{\mu} + J^{A}_{\mu} \right)$
 - Neutral current: $\mathcal{J}_{\mu}^{(0)} = (1 2 \cdot \sin^2 \theta_W) \frac{\tau_0}{2} J_{\mu}^V + \frac{\tau_0}{2} J_{\mu}^A 2 \cdot \sin^2 \theta_W \frac{1}{2} J_{\mu}^V$
- The current of polar (axial) vector symmetry is the Noether current of the QCD Lagrangian, with respect to $SU(2)_V$ [SU(2)_A] symmetry.

Includes:

- single nucleon current (leading order)
- Meson exchange currents.

Weak Currents in the Nucleus from χPT

- $SU(2)_L xSU(2)_R$ is the gauging of the electro-weak force.
- Weak currents are thus the Nother current of this symmetry.

$$\mathcal{J}^{a\mu} \equiv -\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\epsilon^{a}(x))}$$

• In χ PT:

- Single nucleon currents come at leading order (and receive momentum dependent corrections at higher orders).
- Meson exchange currents start at N²LO.

T.-S. Park et al, Phys. Rev. C 67, 055206 (2003); DG PhD thesis arXiv: 0807.0216

$$\begin{aligned} \hat{J}^{\mu \mathbf{V}} &= \overline{u}(p') \begin{bmatrix} F_V(q^2) \gamma^{\mu} + \frac{i}{2M_N} F_M(q^2) \sigma^{\mu\nu} q_{\nu} + \frac{g_S}{m_\mu} q^{\mu} \end{bmatrix} u(p) \\ \text{Vector} & \text{Magnetic} & \text{Second class currents} \\ \hat{J}^{\mu \mathbf{A}} &= -\overline{u}(p') \begin{bmatrix} G_A(q^2) \gamma^{\mu} \gamma_5 + \frac{g_P(q^2)}{m_\mu} \gamma_5 q^{\mu} + \frac{ig_t}{2M_N} \sigma^{\mu\nu} \gamma_5 q_{\nu} \end{bmatrix} u(p) \end{aligned}$$

p'

9

р

Induced Pseudo-Scalar

• q dependence is due to pion loops.

Axial

• Second class currents vanish to this order!

Weinberg Phys. Rev., 112, 1375 (1958)

Meson Exchange currents

- Vector currents, protected by charge conservation (or CVC), do not include contact parameters.
- Axial currents are more complicated, in configuration space: $\hat{\mathcal{A}}_{12}^{i,a}(\vec{r_{ij}}) = \frac{g_A}{2Mf_{\pi}^2} \hat{d}_r \mathcal{O}_{\ominus}^{i,a} \delta_{\Lambda}^{(3)}(\vec{r_{ij}}) + \frac{g_A m_{\pi}^2}{2Mf_{\pi}^2} \mathcal{O}_P^{i,a} y_{1\Lambda}^{\pi}(r_{12}) - \frac{\vec{\mathcal{O}}_{\pi}^a = -\frac{m_{\pi}}{(\vec{\tau}^{(1)} \times \vec{\tau}^{(2)})^a} (\vec{P}_{\cdot} \vec{\sigma}^{(2)} \cdot \hat{r}_{1a} + \vec{P}_{a} \vec{\sigma}^{(1)} \cdot \hat{r}_{1a})}{-\frac{g_A m_{\pi}^2}{2Mf_{\pi}^2} \left[\frac{\hat{c}_3}{3} (\mathcal{O}_{\oplus}^{i,a} + \mathcal{O}_{\ominus}^{i,a}) + \frac{2}{3} (\hat{c}_4 + \frac{1}{4}) \mathcal{O}_{\otimes}^{i,a} \right] y_{0\Lambda}^{\pi}(r_{ij})} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} dR = \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{M_N}{\Lambda_{\chi} g_A} c_D + \frac{1}{3} M_N (c_3 + 2c_4) + \frac{1}{6} M_N (c_3 + 2c_4) + \frac{1}{6} M_N (c_4 + 2c_4) + \frac{1}{6} M_N (c_5 + 2c_4$ $-\frac{g_A m_\pi^2}{2M f_\pi^2} \left[\hat{c}_3 \left(\mathcal{T}_{\oplus}^{i,a} + \mathcal{T}_{\ominus}^{i,a} \right) - \left(\hat{c}_4 + \frac{1}{4} \right) \mathcal{T}_{\otimes}^{i,a} \right] y_{2\Lambda}^{\pi}(r_{ij})$ $\delta^{(3)}_{\Lambda}(\vec{r}) \equiv \int \frac{d^3k}{(2\pi)^3} e^{i\vec{k}\cdot\vec{r}} S^2_{\Lambda}(\vec{k}^2),$ 1 pion exchange Contact term $y_{\Lambda 0}^{\pi}(r) \equiv \int \frac{d^3k}{(2\pi)^3} e^{i\vec{k}\cdot\vec{r}} S_{\Lambda}^2(\vec{k}^2) \frac{1}{\vec{k}^2 + m^2}$ $y_{\Lambda 1}^{\pi}(r) \equiv -\frac{\partial}{\partial r} y_{\Lambda 0}^{\pi}(r),$ $y_{\Lambda 2}^{\pi}(r) \equiv \frac{1}{m_{-}^{2}} r \frac{\partial}{\partial r} \frac{1}{r} \frac{\partial}{\partial r} y_{\Lambda 0}^{\pi}(r)$ 24

Some remarks

- Meson exchange current involves only TWO nucleons.
- Thus, in principle c_D can be calibrated using two-body weak processes.
- So three nucleon force constrained in the two nucleon level!
- The most attractive process
 - Muon capture on deuteron an experiment at PSI "MuD (MuSun)" aims to measure this process to 1%.

Nuclear Matrix Elements

• A multipole decomposition of the currents is very helpful:

$$\hat{C}_{JM}(q) = \int d\vec{x} j_J(qx) Y_{JM}(\hat{x}) \hat{\mathcal{J}}_0(\vec{x})$$
$$\hat{E}_{JM}(q) = \frac{1}{q} \int d\vec{x} \vec{\nabla} \times [j_J(qx) \vec{Y}_{JJM}(\hat{x})] \cdot \hat{\vec{\mathcal{J}}}(\vec{x})$$
$$\hat{M}_{JM}(q) = \int d\vec{x} j_J(qx) \vec{Y}_{JJM}(\hat{x}) \cdot \hat{\vec{\mathcal{J}}}(\vec{x})$$
$$\hat{L}_{JM}(q) = \frac{i}{q} \int d\vec{x} \vec{\nabla} [j_J(qx) Y_{JM}(\hat{x})] \cdot \hat{\vec{\mathcal{J}}}(\vec{x})$$

• Usually, the low energy and selection rules mean that only a small number of multipoles contribute.

$$\beta \text{ decay rate for } q \rightarrow 0$$

$$(fT_{1/2})_t = \frac{K/G_V^2}{(1 - \delta_c) + 3\pi \frac{f_A}{f_V} \langle E_1^A \rangle^2} \langle E_1^A \rangle^2 \langle E_1^A \rangle = |\langle^3 \text{He}||\dot{E}_1^A||^3 \text{H}\rangle|$$

• At the leading order:

$$E_1^A|_{\text{LO}} = i g_A (3\pi)^{-1/2} \sum_{i=1}^{GT} \sigma_i \tau_i^+$$

- This is the reason for the common name: experimental Gamow-Teller.
- For the triton β -decay:

$\langle E_1^A \rangle|_{expt} \!=\! 0.6848 \pm 0.0011$

Doron Gazit - TRIUMF thoery group seminar

Akulov, Mamyrin, **Phys. Lett. B 610**, 45 (2005) Simpson, **Phys. Rev. C 35**, 752 (1987) Schiavilla, **Phys. Rev. C 58**, 1263 (1998)

Some properties at $c_D = 1$, $c_E = -0.029$

		³ H		n	d	$^{4}\mathrm{He}$		$n^{3}\mathrm{H}$	
		$E_{\rm g.s.}$	$\langle r_p^2 \rangle^{1/2}$	^{2}a	4a	$E_{\rm g.s.}$	$\langle r_p^2 \rangle^{1/2}$	^{1}a	^{3}a
NN NN	NCSM [16], ^a HH [20]	-7.852(5) -7.854	1.650(5) 1.655	_ 1.100	6.342	$-25.39(1) \\ -25.38$	1.515(2) 1.518	4.20	
NN+NNN NN+NNN	NCSM [16], ^a HH [20]	-8.473(5) -8.474	1.608(5) 1.611	0.675	6.342	$-28.34(2) \\ -28.36$	1.475(2) 1.476	3.99	
Expt. Expt. [21–23] Expt. [24, 25]		-8.482 _ _	1.60 	$0.65(4) \\ 0.645(8)$	6.35(2)	-28.296 - -		- $4.98(29)$ $4.45(10)$	- 3.13(11) 3.32(2)

[20] A. Kievsky et al., J. Phys. G 35, 063101 (2008).

[21] W. Dilg et al., Phys. Lett. B 36, 208 (1971).

[22] E. Borie and G. A. Rinker, Phys. Rev. A 18, 324 (1978);

S. Kopecky *et al.*, Phys. Rev. Lett. **74**, 2447 (1995); P.
 Mohr and B. Taylor, Rev. Mod. Phys. A **596**, 367 (1996);
 L. Siele, Phys. Lett. B **576**, 62 (2002).

I. Sick, Phys. Lett. B 576, 62 (2003).

- [23] H. Rauch et al., Phys. Lett. B 165, 39 (1985).
- [24] K. Schoen et al., Phys. Rev. C 67, 044005 (2003).

[25] G. M. Hale et al., Phys. Rev. C 42, 438 (1990).

Doron Gazit - TRIUMF thoery group seminar

Not all is good yet... two remarks:

- p-shell nuclei seem to suggest $c_D \sim -1$.
 - Renormalizing effect of the missing 3NF?
- Numerical problems? 5³
 There is still uncertainty, 5³ 0.99 due to urb due to unknown value of C₄:
 - Still has to be checked consistently.

The apparent conclusion

- For GT type of operators, the short range correlations in the wave functions are not important for the observable.
- The long tail behavior of the potential is more essential.
- Is this the origin of the success of EFT*: hybrid calculations of weak reactions, using phenomenological forces in combination with χ PT based currents?
 - One unknown parameter in MEC (d_R) calibrated using the triton half-life.

Uses of EFT*

- Many possible applications:
 - Extracting the weak structure of the nucleon from muon capture on ³He.
 DG, Phys. Lett. B 666, 472 (2008).
 - Predicting neutrino reactions on light nuclei, essential for supernova calculations.

DG, Barnea, **Phys. Rev. Lett. 98**, 192501 (2007); DG et al. **Phys. Rev. C 75**, 055803 (2007); DG, PhD thesis.

• Calculating weak reactions for the sun (*hep* and *pp*).

Park et al, Phys. Rev. C 67, 055206 (2003).

• Understanding the role of MEC in heavier nuclei.

Vaintraub, DG, Barnea, in preparation.

Doron Gazit - TRIUMF thoery group seminar

The decay of a muonic ³He: competition

- The rates become comparable for $Z \sim 10$.
- The Z^4 law has deviations mainly due to nuclear effects.

In order to probe the weak structure of the nucleon, one has to
 ³⁷ keep the nuclear effects under control.

, words... problem from the number of the problem from the n

MuCap, Phys. Rev. Lett. 99, 032002 (2007).

$$\Gamma(\mu^{-} + {}^{3}\text{He} \rightarrow \nu_{\mu} + t)_{stat} = 1496 \pm 4 \text{ Hz}$$

Ackerbauer et al, Phys. Lett. B417, 224 (1998).

Final result:

$$\Gamma = \left\{ \frac{2G^2 |V_{ud}|^2 E_v^2}{2J_{_{^3}\text{He}} + 1} \left(1 - \frac{E_v}{M_{_{^3}\text{H}}} \right) |\psi_{1s}^{av}|^2 \Gamma_N \right\} (1 + RC)$$

$$\Gamma = 1499(2)_\Lambda (3)_{NM} (5)_t (6)_{RC} = 1499 \pm 16 \text{ Hz}$$

$$\Gamma_{EXP} = 1496 \pm 4 \,\mathrm{Hz}$$

PANIC08

Constraints on the weak structure of the nucleon from muon capture on ³He

$$\hat{J}^{\mu \mathbf{V}} = \overline{u}(p') \left[F_V(q^2) \gamma^{\mu} + \frac{i}{2M_N} F_M(q^2) \sigma^{\mu \nu} q_{\nu} + \frac{g_s}{m_{\mu}} q^{\mu} \right] u(p)$$

Vector

Axial

Magnetic

Second class currents

$$\hat{J}^{\mu \mathbf{A}} = -\overline{u}(p') \left[G_A(q^2) \gamma^{\mu} \gamma_5 + \frac{g_P(q^2)}{m_{\mu}} \gamma_5 q^{\mu} + \frac{ig_t}{2M_N} \sigma^{\mu\nu} \gamma_5 q_{\nu} \right] u(p)$$

Induced Pseudo-Scalar

40

PANIC08

Induced pseudo-scalar:

- From χ PT [Bernard, Kaiser, Meissner, PRD 50, 6899 (1994); Kaiser PRC 67, 027002 (2003)]: $g_P(-0.954m_{\mu}^2) = 7.99(0.20)$
- From muon capture on proton [Czarnecki, Marciano, Sirlin, PRL 99, 032003 (2007); V. A. Andreev et. al., PRL 99, 032004(2007)]: $g_P(-0.88m_{\mu}^2) = 7.3(1.2)$

• This work:
$$g_P(-0.954m_\mu^2) = 8.13(0.6)$$

 $g_P(q^2) = \frac{2m_\mu g_{\pi pn} f_\pi}{m_\pi^2 - q_\mu^2} - \frac{1}{3}g_A m_\mu M_N \langle r_A^2 \rangle = 7.99(20)$

• From QCD sum rules: $\frac{g_t}{g_A} = -0.0152(53)$ • Experimentally [Wilkinson, Nucl. Instr. Phys. Res. A 455, 656 (2000)]:

$$\frac{g_t}{g_A} < 0.36$$
 at 90%

$$\frac{g_t}{g_A} = -0.1(0.68)$$

$$\delta J^{\mu A} = \frac{ig_t}{2M_N} \sigma^{\mu\nu} \gamma_5 q_\nu$$

Induced scalar (limits CVC):

• "Experimentally" [Severijns et. al., RMP 78, 991 (2006)]: $g_s = 0.01 \pm 0.27$

• This work: $g_s = -0.005 \pm 0.04$

$\boldsymbol{\beta}$ decay rates for heavier nuclei

- Experimental extraction of "Gamow-Teller" strengths from β -decay rates shows a needed suppression: $g_A \rightarrow 1$ starting from A=3 gradually to A=40, where it stays at $g_A=1$. $GT \sim g_A \sum \sigma_i \tau_{3,i}$
- Note that $g_A = 1$ means a restoration of axial symmetry!
- Signatures of this restoration appear in hadron spectra at high energies.
- Is this a signature of the restoration of chiral symmetry in nuclear matter?
- But... this is only the leading order of the E_1^A operator.
- What is the effect of higher orders?
- After triton, the next β -decaying nucleus is ⁶He, where consistent calculations are complicated.
- EFT* helps allows the use of softer phenomenological potentials.

Doron Gazit - TRIUMF thoery group seminar

The JISP16 NN potential

The JISP16 reproduce the NN phase shifts in the range 0 - 300 MeV.

Binding Energies					
	AV18+UBIX	JISP16	Nature		
D	2.24	2.24	2.24		
ЗH	8.48	8.35	8.48		
³ He	7.74	7.65	7.72		
4 He	28.5	28.3	28.3		
⁶ He	-	29.0	29.29		
⁶ Li	-	31.9	31.99		

AV18+UBIX - Argonne V18 + Urbana IX JISP16 - J-matrix Inverse Scattering Potential, Shirokov *et* al.

Single nucleon GT strengths

The β -decay half-life

$t_{1} = \frac{1}{2}$	$\tau \log 2$
$v_{1/2} = \overline{f}$	$\langle F \rangle^2 + (F_A/F_V)^2 \langle GT \rangle^2$

$$\langle GT \rangle \equiv \langle \Psi_f || \sum_j \sigma_j \tau_j^+ || \Psi_i \rangle$$
$$\langle F \rangle \equiv \langle \Psi_f || \sum_j \tau_j^+ || \Psi_i \rangle$$

$^{3}\mathrm{H}$ - $^{3}\mathrm{He}$

Potential	$\langle GT \rangle$
AV18+3NF	$\sqrt{3} \cdot 0.923(1)$
Bonn+3NF	$\sqrt{3} \cdot 0.936(1)$
JISP16 [This work]	$\sqrt{3} \cdot 0.9544(4)$
Expt.	$\sqrt{3} \cdot 0.955(3)$

$^{6}\mathrm{He}$ - $^{6}\mathrm{Li}$

Potential	$\langle GT \rangle$
AV18/UIX - VMC	2.250(7)
AV18/IL2 - VMC	2.22(2)
AV18/IL2 - GFMC	2.182(25)
AV8/TM - NCSM	2.283(2)
JISP16 - [This work]	2.229(3)
Expt.	2.170(3)

Complete current

The Gamow-Teller ⁶He - ⁶Li matrix element

Potential	1-body	2-body
AV18/UIX - VMC	2.250(7)	2.281(7)
JISP16 [This work]	2.229(3)	2.193(2)
Expt.		2.170(3)

- The VMC calculation with MEC made things even worse for ⁶He !
- HH calculations with EFT 2-body currents reconcile theory and experiment !
- The matrix-element is almost independent of the cutoff !

Conclusions from ⁶He β decay

- The 1-body current underpredict the ³H β -decay $\langle GT \rangle$.
- It overpredict the ⁶He β-decay (GT).
- 2-body currents derived from meson exchange model go in the wrong direction
 for ⁶He !
- In contrast, EFT 2-body currents lead to reconciliation between the and experiment.
- The predicted ⁶He β-decay half life is independent of the cutoff.

Final Remarks

- Weak reaction rates provide efficient observables to calibrate the three nucleon forces.
- In the (near) future, a combined calculation of muon capture rates on deuteron and ³He will allow cross-checks of the calibration.
- Consistent calculation of ⁶He decay rate, as well as electron capture on ⁷Be, could light the way to heavier elements.
- In the meantime EFT* has a new justification.
- These studies can:
 - Give parameter free QCD predictions for nuclear reactions.
 - Shed light on short range correlations in nuclei:
 - 3NF.
 - MEC.
- Solving QCD problems in the nuclear system: the $g_A \rightarrow 1$ problem.