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Introduction 
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  Precision era in few-body nuclear physics: 

 Available methods for solving exactly the Schrödinger equation for few 
body systems, from their nucleonic degrees of freedom: 
  Green’s Function Monte Carlo. 

  No core shell model. 

  Expansions in Hyperspherical Harmonics. 

 High precision nuclear interaction, phenomenological or χPT based: 
  Spectra of light nuclei. 

  Transitions and cross-sections. 

  Allows parameter free calculations of nuclear wave functions and low-energy 
reaction rates, with sub-percentage accuracy. 

  How can we use this to gain understanding on interesting problems? 



Outline 
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 Using χPT for calculating low-energy electro-weak reactions. 
  Applications: 

 Nuclear Physics: constraining the nuclear force using triton β-decay 
and an inside look into correlations in the nucleus. 

 Nucleon: Weak structure of the nucleon from µ-capture on 3He. 
 Astrophysics: Neutrino reactions with light nuclei in Supernovae. 
 QCD: no signature for gA suppression in nuclear matter from β-decay 

of 6He? 
 Weak interaction in Holographic QCD: easy access to the size of low-

energy constants.  



Modern approach for low-energy EW nuclear reactions: 

Chiral Lagrangian 

QCD 
Low energy 
EFT 
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Effective field theory (EFT) for nuclear physics: Chiral 
perturbation theory (χPT) 
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€ 

SU 2( )L × SU 2( )R ≅ SU 2( )V × SU 2( )A → SU 2( )V



Weinberg’s Power Counting Scheme 
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  Each Feynman diagram can be characterized by: 

 Q~140 MeV is the relevant momentum of the process or pion 
masses in the diagram. 

                     is the chiral symmetry breaking scale. 
 Weinberg showed: 

  In addition, expand in the inverse of the nucleon’s mass (take 
Λχ~MN) Heavy Baryon χPT. 

€ 
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€ 

Q
Λχ

 

 
  

 

 
  

ν

€ 

Λχ ~ 1 GeV

Chiral Perturbation Theory 



The big deal in χPT 
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 A perturbation theory/expansion in small parameter of the 
observable, gives control over the accuracy of the calculation. 

 Varying the cutoff gives estimate of the theoretical error-bar. 
 Allows connection between a-priori not related operators.  
  In particular the nuclear force and the electro-weak currents 

in the nucleus (that the SU(2)xSU(2) structure is a gauging 
of).  

 When the low-energy constants are known: the calculations 
are predictions of QCD. 



χPT approach for low-energy EW nuclear reactions: 

Weak 
current 

Chiral Lagrangian 

QCD 
Low energy 
EFT 

Nöther 
current 

Wave 
functions 

Nuclear Hamiltonian + 
Solution of Schrödinger equation 
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Weak interaction with the nucleus 
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Nuclear 
current 

Lepton 
current 

Scattering operator  

Currents in the nucleus 
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χPT approach for low-energy EW nuclear reactions: 

Weak 
current 

Chiral Lagrangian 

QCD 
Low energy 
EFT 

Nöther 
current 

Wave 
functions 

Nuclear Hamiltonian + 
Solution of Schrödinger equation 

Nuclear Matrix 
Element 
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• Only contact terms cannot 
be calibrated in the pion or 
pion/nucleon system. 

• The 2N terms are calibrated 
to reproduce phase shifts. 

Epelbaum et al, Nucl. Phys. A671, 
295 (2000). 

Machleidt, Entem, Phys. Rev. C 68, 
041001 (2003) 

Figure taken from Machleidt, 
arXiv:nucl-th/0503025. 
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Hierarchy of Nuclear 
Forces in χPT 



3 nucleon forces at N2LO 
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€ 

cD

€ 

cE

One New param. 

Strategy : calibrate cD and cE from nuclear matter observables,  
   and then predict other observables. 



Attempts to calibrate the contact parameters 
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Other attempts were to 
use 3 nucleon scattering 
lengths as a second 
observable. 

The problem is the 
cross-correlation of the 
different observables. 

This leads to an error 
bar of about ΔcD~±1 

Here, we choose to calibrate the contact parameters using weak observables 



Some remarks 
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  For now, only N2LO 3NF exist. 
 However, they include all LEC to N3LO. 
 Clearly – more work is called for! 
…However, one can achieve very interesting results and 

conclusions, regarding the nature of correlations inside the 
nucleus… 



Weak currents in the nucleus 
 The standard model dictates only the structure of the 

currets: 
 Charged current 

 Neutral current: 
 The current of polar (axial) vector symmetry is the 

Noether current of the QCD Lagrangian, with respect 
to SU(2)V [SU(2)A] symmetry. 

  Includes: 
 single nucleon current (leading order) 
 Meson exchange currents. (start at N3LO) 
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Single Nucleon Currents 

16 

  q dependence is due to pion loops. 
  Second class currents vanish to this order! 
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Weinberg Phys. Rev., 112, 1375 (1958) 
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Meson Exchange currents 

17 

  Vector currents, protected by charge conservation (or CVC), do 
not include contact parameters, up to fourth order. 

  Axial currents are more complicated, in configuration space: 

Contact term 1 pion exchange 



Some remarks 
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 Meson exchange current involves only TWO nucleons. 
  Thus, in principle cD can be calibrated using two-body weak 

processes. 
  So – three nucleon force constrained at the two nucleon level! 
  There are no low-energy weak observables that are measured 

accurately enough. 
 However, many 3 nucleon processes are measured very well. 



Constraining the Nuclear force 
using 3H β-decay  
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DG, S. Quaglioni, P. Navratil, arxiv: 0812.4444. 



Nuclear Matrix Elements 
  A multipole decomposition of the currents is very helpful: 

 Usually, the low energy and selection rules mean that only a small 
number of multipoles contribute. 
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β decay rate for q0 
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  At the leading order: 

  This is the reason for the common name: experimental 
Gamow-Teller. 

  For the triton β-decay: 

GT 

Akulov, Mamyrin, Phys. Lett. B 610, 45 (2005) 
Simpson, Phys. Rev. C 35, 752 (1987) 
Schiavilla, Phys. Rev. C 58, 1263 (1998)  



Calibration result 
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A prediction 
of 4He 
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Not all is good yet… 
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 What is the effect of the missing 3NF diagrams? 
   p-shell nuclei seem to suggest cD~-1. 

 Renormalizing effect of the missing 3NF? 
 Numerical problems when calculating p-shell nuclei? 

  There is still uncertainty, due to poorly known LEC - c4: 
 Still has to be checked consistently. 

 Checked only with a specific χPT Force: 
 No cutoff dependence. 



What can we learn about correlations in the wave function? 
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MEC are essential for the calculation! 3NF are not essential! Contact interaction is extremely important! 



The apparent conclusion 
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  For GT type of operators, the short range correlations in the wave 
functions are not important for the observable. 

  The long tail behavior of the potential is more essential. 
  Is this the origin of the success of EFT*: hybrid calculations of 

weak reactions, using phenomenological forces in combination 
with χPT based currents?  
 One unknown parameter in MEC (dR) calibrated using the 

triton half-life. 



EFT* approach for low-energy nuclear reactions: 

Weak 
current 

Chiral Lagrangian 

QCD 
Low energy 
EFT 

Nöther 
current 

Wave 
functions 

€ 

Nuclear  Matrix
Element

Phenomenological 
Hamiltonian 

Solution of Schrödinger equation 

T.-S. Park et al, Phys. Rev. C 67, 055206 (2003), M. Rho arXiv: nucl-th/061003. 
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Extracting the weak structure of 
the nucleon from µ-capture on 3He 
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DG, Phys. Lett. B 666, 471 (2008). 



The decay of a muonic 3He: competition 

  The rates become comparable for Z~10. 
  The Z4 law has deviations – mainly due to nuclear effects. 
  In order to probe the weak structure of the nucleon, one has to 

keep the nuclear effects under control. 

e 
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ν e
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τ µ
free = 2.197019(21) ×10−6 sec 3He(µ-,νµ) 3H 
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Why don’t we stay in the single nucleon level? 
The MuCap collaboration (PSI) measuring:  

€ 

Γ µ−p→ν µn( )1S
singlet

= 725.0 ±13.7stat ±10.7systHz

Expecting to achieve 1% accuracy.  

For the (exclusive) process 3He(µ-,νµ) 3H 
an incredible measurement (±0.3%): 

MuCap, Phys. Rev. Lett. 99, 032002 (2007). Ackerbauer et al, Phys. Lett. B417, 224 (1998). 

€ 

Γ µ−+3He→ν µ +t( )stat =1496 ± 4Hz

A parameter free, percentage level accuracy calculation of the process is a great 

challenge to nuclear physics – which is now possible!! 
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Calculation: 
 We take the phenomenological AV18 (NN) and UIX 

(NNN) nuclear forces.  

€ 
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Γ =1499(2)Λ (3)NM (5)t (6)RC =1499 ±16  Hz

€ 

ΓEXP =1496± 4Hz
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Constraints on the weak 
structure of the nucleon from 

muon capture on 3He 
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Induced pseudo-scalar: 
  From χPT [Bernard, Kaiser, Meissner, PRD 50, 6899 

(1994); Kaiser PRC 67, 027002 (2003)]: 

  From muon capture on proton [Czarnecki, Marciano, 
Sirlin, PRL 99, 032003 (2007); V. A. Andreev et. al., 
PRL 99, 032004(2007)]:  

  This work:  

€ 

gP −0.954mµ
2( ) = 7.99(0.20)

€ 

gP −0.88mµ
2( ) = 7.3(1.2)

€ 

gP −0.954mµ
2( ) = 8.13(0.6)
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gP q
2( ) =

2mµgπpn fπ
mπ
2 − qµ

2 −
1
3
gAmµMN rA

2 = 7.99(20)



Induced Tensor: 
  From QCD sum rules:  
  Experimentally [Wilkinson, Nucl. Instr. Phys. Res. A 

455, 656 (2000)]: 

  This work:  

€ 

gt
gA

= −0.0152(53)

€ 

gt
gA

< 0.36  at  90%

€ 

gt
gA

= −0.1(0.68)
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€ 

δJ µA =
igt
2MN

σ µνγ5qν



Induced scalar (limits CVC): 
  “Experimentally” [Severijns et. al., RMP 78, 991 

(2006)]: 

  This work:  € 

gS = 0.01± 0.27

€ 

gS = −0.005 ± 0.04
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€ 

δJ µV =
gS
mµ

qµ



Neutrino interaction with A=3,4 
nuclei in Supernovae 
Too small to measure… 

Need parameter free calculations… 
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DG, Barnea Phys. Rev. C 70, 048801 (2004); Phys. Rev. Lett. 75, 192501 (2007); Nucl. Phys. A 
790, 356 (2007); Few Body Syst. (2008).    
O’Connor, DG, Horowitz, Schwenk, Barnea, Phys. Rev. C 75, 055803 (2007). 
DG, PhD. thesis, arXiv: 0807.0216 (2007). 



Type II supernovae 
  Core collapse supernovae are giant explosions of massive stars. 

  99% of the energy released is carried away by neutrinos, thus the phenomena inside are 
sensitive to neutrino interactions with matter. 

  SNe are the probable site for r-process nucleosynthesis.  
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Supernova 1987A 



The death of a massive star 
“the nuclear physicist paradigm” 
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After millions of years of evolving… 
• Iron peak nuclei don’t burn to heavier nuclei 
 no support to the core mass. 

• The core becomes gravitationally unstable 
collapses. 

• Nuclear forces halt the collapse, and drive an 
outgoing shock. 

• The shock loses energy due to dissociation, 
neutrino radiation. 

• The shock stalls…  

~1 sec 

~100 msec 



Density profile 
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Post-shock microscopic input to SNe modeling 
  EOS – determines the equilibrium composition: 

  Lately it was shown that due to the higher density at the neutrinosphere, this area is 
dominated by: free nucleons, deutron, 3H, 3He, and 4He. 

  Cross-sections for neutrino scattering, especially inelastic scattering: 
  Deposits energy – changes composition and temperature. 
  Change composition – ν nucleosynthesis. 
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O’Connor, DG, Horowitz, Schwenk, Barnea, Phys. Rev. C 75, 055803 (2007). 
Arcones, Martinez-Pinedo, O’Connor, Schwenk, Janka, Horowitz, Langanke. 
arXiv:0805.3752 (2008). 

Haxton, Phys. Rev. Lett 69, 1999 (1988), Woosley et al., Astrophys. J. 356, 272 (1990). 



Composition near neutrinosphere 
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Neutrino cross-
sections 
First ab-initio calculations: 

• Within EFT*: 
•  AV18+UIX NN+NNN 

interactions. 
•  MEC from HBχPT 

• Theoretical accuracy of 
about 1% 
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DG, Barnea Phys. Rev. C 70, 048801 (2004); Phys. Rev. Lett. 75, 192501 (2007); Nucl. Phys. A 
790, 356 (2007); Few Body Syst. (2008).    
O’Connor, DG, Horowitz, Schwenk, Barnea, Phys. Rev. C 75, 055803 (2007). 
DG, PhD. thesis, arXiv: 0807.0216 (2007). 



Energy deposition near neutrinosphere 
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Summary 

  A=3 nuclei can have a substantial influence on phenomena near 
the neutrinosphere.  
 Recent results [Arcones et. al] show a change in the electron antineutrino 

spectrum due to the A=3 nuclei. 

  Effects of inelastic ν-4He reactions on the: 
   explosion mechanism. 
   ν-spectra.  
  ν-nucleosynthesis  

     should be checked in detailed simulations.  
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What can we learn from 6He β-decay 
about the suppression of gA in nuclear 
matter? 
• Surveys of “experimental Gamow-Teller” shows that gA1, as A grows. 
• This has been related to: 

•  Restoration of axial symmetry. 
•  Lack of correlations in the calculation. 
•  Loop corrections from nucleonic excitations. 
•  Something beyond the standard model? 

• Schiavilla and Wiringa showed that for 6He, the suppression is about 4%. 
The MEC actually increased the suppression!! 

•  A real effect? 
•  Problems in VMC? 
•  Problems in the weak current? 

Doron Gazit - JLab Theory seminar 45 
DG, S. Vaintraub, N. Barnea, in preparation (2008). 



The JISP16 NN potential 
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Single nucleon GT strengths 
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Complete current 
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Potential 1-Body Full 

AV18/UIX – VMC 2.250(7) 2.281(7) 

JISP16 2.225(3) 2.191(3) 

Experiment 2.161(4) 

€ 

GT JISP16 = 2.190(4)Λ (2)N (4)t (6)gA = 2.190 ± 0.011



Things to think about from 6He β decay 
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  Is there a qualitative difference between the SNPA based MEC 
and the EFT based MEC? 

  Is this difference a result of the VMC wave functions? 
  Is this difference a result of the use of a too simplistic NN 

potential (JISP16)? 
  The current calculation implies no suppression of gA: 

€ 

gA
6He( )

gA n( )
= 0.986 ± 0.01



Weak Interacting Holographic QCD 
Using string theory to calculate and constrain low-energy weak reactions in 
the real world. 

DG, Ho-Ung Yee, Phys. Lett. B 670, 154 (2008). 
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Large N QCD has a dual classical theory in 5-D?!  
  Large N factorization of gauge invariant theories: 

  Implies a classical theory for gauge invariant operators 
(AKA master fields).  

  RG running survives the large N limit, thus the master field 
is a function of the energy scale: 

 The RG equations constrain flow in this scale 
  Holographic QCD is a gravitational theory of gauge invariant 

fields in 5 dimensions. 
 5th dimension corresponds roughly to the energy scale. 
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Things that we know 
AdS/CFT Duality proposal 

N=4 Super Yang-Mills theory in (3+1)D for Nc∞, 
gYM0 and fixed but large  

is equivalent to 
Type IIB Supergravity in AdS5×S5 with size λ¼ 
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€ 

λ = gYM
2 NC



We thus expect the dual theory of QCD… 
  In the UV regime: highly nonlocal, corresponding to 

asymptotic freedom. 
  In the IR regime: local, corresponding to the strongly 

correlated QCD. 
  Thus, current models of Holographic QCD model the 

gravitational dual as a local theory. 
  Properties of existing models of Holographic QCD: 

 Chiral symmetry. 
 Confinement. 
 Explain experimental observables to 20%. 
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Low-energy Weak interaction 

54 
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How to perturb the QCD Lagrangian? 

Gauge 

  Perturbation to the 
Lagrangian. 

  Single trace operator O. 

  A Lagrangian 
pertutbation: 

Gravity 

 Deforming boundary 
conditions of field near UV 
boundary. 

  A 5D field, such that: 

  Boundary conditions: 
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c1 x( ) = f x( )
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For a general functional perturbation of 
a single trace operator 
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€ 

ΔL = d4xF O x( )[ ]∫

  

€ 

c1 x( ) =
δF O[ ]
δO

O →c2 x( )

c2 x( ) = O x( )



Implementation 
The idea is general enough to implement in any Holographic Model.  
We demonstrated on two models: 
Top – Down Model: Sakai-Sugimoto Model 
Bottom – Up Model: Hard/Soft Wall Model. 
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How to calculate different reactions? 
 Write equation of motion for the global gauge field (i.e. the 

U(NF) current). 
  Solve it with the prescribed boundary conditions. 
  If you’d like pions to be involved, do it by gauge fixing Az. 

  For reactions that include nucleons, choose a model for 
baryons, and calculate baryon-pion coupling from the kinetic 
term, and from magnetic type of couplings: 
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€ 

S = i d4x dω B γM ∂M − iAM( )B - mB ω( ) + CB σ MNFMNB + ...[ ]∫∫

€ 

Az +∞( ) =
1
πκ

⋅
π x( )
1+ z2



Neutron b-decay 

Sakai-Sugimoto 

 With: 

Hard/Soft wall model 

 With: 
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gA =1.3
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gA = 0.33+1.02D



Parity non-conserving pion-nucleon coupling 
  First example without an external source. 
 We are interested in parity violating couplings of mesons 

to the nucleons. 
  To this end, we consider only charged pion-nucleon 

coupling. 
  In both models, the result in the zero q limit is identical 

to the current algebra result: 

  Still, a lot to be done! 
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€ 

LN−π
weak = −2GF fπ p γ µn( ) ∂µπ

+( )



Summary 
  This is a prescription to include weak interactions in the 

framework of holographic QCD. 
  Applicable up to energies of a few GeV, when strong 

coupling is still valid. 
 We have shown its strength by using Sakai-Sugimoto and 

Hard/Soft wall models to calculate few exemplar 
reactions. 

  The current approach, contrary to other approaches 
(such as χPT), gives not only the operator structure, but 
the numerical coefficients, to about 20%, and valid for 
energies above the chiral limit. 
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Final Remarks 
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  Electro-weak reactions with light nuclei: 
 Can be used to study the basic symmetries of QCD. 
 Are involved in stellar evolution, supernovae, and other 

astrophysical phenomena. 
 Provide a hatch to the properties of heavier nuclei. 

  Parameter free calculations, which will be done within χPT, 
would be able to constrain these observables. 
 For that, a microscopic calculation of LECs is needed. 

  A lot to do… 



Collaborators and Other helps   
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