


Introduction 
  Crystalline membranes are solid-like structures with 2D 

character. 

  Very common in our world: 

  Cytoskeleton of  red blood cells – whose structure is vital for the 
operation and stability of  the cell – forms a triangular lattice. 

  In soft condensed matter, one can create crystalline lattices by 
polymerizing liquid interfaces. 

  In condensed matter layered materials of  tens to hundreds of  
layers. 

  However – the isolation of  graphene, and then of  other single 
layers, has conquered the final frontier – with many 
implications. 
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Introduction (2) 
  Thus: 

  Only one atom thick, graphene should represent the ultimate 
crystalline membrane, and can be used as a simple model, 
where calculations are feasible. 

  The fact that graphene can be used to construct nanometer-sized 
electronic applications, has only enhanced the need of  a 
profound understanding of  its structure, which is a critical 
ingredient in the design and quality control of  such applications. 

  However,   

  Experiments show that graphene possesses intrinsic ripples, of  
sizes 100-300 Å. 

  Theory predicts a scale invariant cascade of  corrugations. 

  What is the origin of  this difference? 
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Outline 
  Crystalline membranes. 

  The structure of  physical crystalline membranes within the 
self-consistent screening approximation. 

  Graphene: an electronic crystalline membrane! 

  On the correlation between charge inhomogeneities and ripples 
in graphene. 

  Spontaneous buckling of  hole doped graphene. 

  Outlook. 
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Physical Crystalline Membranes 
  Membranes are D dimensional entities, embedded in a d 

dimensional world. 

  Physical membranes: D=2, d=3.  

  Crystalline membranes are built of  a lattice with fixed 
connectivity. 

  The main question: does a flat phase exist? What is its 
structure? 

  Is the Mermin-Wagner theorem violated? 

  Phase stability is a long wavelength question, thus continuum 
theory. 
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The flat phase of  a crystalline membrane 
  We need to describe an almost flat phase in the continuum. 

  We use the Monge representation: 

  Describe a deviation from the flat phase by: 

  The metric is: 

the strain tensor: 

  We expand around a flat surface, keeping leading orders in h 
and u.  
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The flat phase of  a crystalline membrane (2) 
  In addition, bending the membrane costs energy. 

  This can be expressed using the curvature tensor: 

  For small deformations, the energetics is a sum of  bending energy 
and elastic energy: 

  Note:  

  Linear terms are not included as the membrane  
is assumed to be free.  
Cross terms break the symmetry between the two sides of  the 
membrane.  

  The Gaussian curvature energy is invariant under small deformations 
for D=2, thus not important for the structure.  
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The flat phase of  a crystalline membrane (3) 
  Thus we will focus on the following free energy: 

  For a bulk 3-d material, small perturbations are given in terms of  the 
elastic part only, characterized by µ3d, and λ3d (or equivalently the 
Young modulus K3d and the Poisson ratio ν3d). 

  For a physical membrane with a lateral size h: 

  The height of  the membrane: 

  Thus, the height of  graphene is about 1 Angstrom, i.e. less than the 
lattice size! 

  Graphene, in the continuum limit is truly the ultimate membrane!  
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The flat phase of  a crystalline membrane (4) 
  The Green’s function of  the h field: 

With the effective bending rigidity 

  ζ – the roughness exponent: 

  The bending rigidity                ,                           . 

  In principal, one can define an elasticity exponent: 

  From Ward identities 

  Experimentally,                            , which means that h fluctuations 
are divergent. But normal-normal fluctuations… 

Thus, an asymptotically flat phase.  
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The flat phase of  a crystalline membrane (5) 
  Thus we will focus on the following free energy: 

  The in-plane phonon fields enter quadratically – thus can be 
integrated out: 

  The effective four-leg interaction: 
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The flat phase of  a crystalline membrane (5) 
  What is the relevant perturbation scheme? 

  Expand in the number of  bubbles, implying that the elastic 
interaction is small compared to the bending energy. 

  By power counting this is true only for                   , thus not 
applicable for the structure issue. 

  A different scheme hides in the fact: 

  Every interaction contributes a factor 1/dC=1/(d-D). 

  Every h field propagator adds dC=d-D. 

  Thus, a relevant perturbation scheme is in powers of  1/dC. 
Topologically, diagrams contributing to order n in perturbation 
theory fulfill the condition: n=NR-Lh, (NR- number of  
interactions, Lh-number of  loops). 
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Physical Crystalline Membranes 
  The interaction is separable: 

  Feynman diagrams: 

  Dyson equations: 
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Self  Consistent Screening Approximation 
  SCSA is an extension of  a consistent perturbative expansion. 

  One replaces each propagator with the dressed propagator. 

  Cutting the expansion at a specific order. 

  SCSA for a first order expansion:  

  Le Doussal and Radzihovsky, PRL 69, 1209 (1992). 

  SCSA for a second order expansion: 

  DG, arxiv: 0907.3718 (2009). 
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SCSA – general results 

  The scaling relation                           holds to all orders. 

  At any order the SCSA equations: 

  σ and ψ are polynomials in z0y0
-2. 

  For D>2, the long-wavelength Poisson ratio is -1/3. 

  The first order SCSA coincides with: 

  First order expansion in 4-D. 

   d=D 

  Large dC expansion. 
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Second order SCSA for physical crystalline membranes 

  Second order - a naïve 2-loop expansion or a 1/dC
2 expansion? 

  No solution for a naïve 2-loop expansion! 

  Thus, the 1/dC character of  the expansion is essential. 

  However, even though dC=1, the results are very close: ζ 
changes only by 2%. 

  One should try and check if  this still coincides with the ε2  
expansion, as this will give an indication of  the error. 
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Method η
 ηu ζ
 References 

1st order SCSA 0.821… 0.358… 0.590… PRL, 69, 1209 (1992) 

2nd order SCSA 0.789… 0.421… 0.605… This work 

ε Expansion [1] 0.96 0.08 0.52 PRL 60, 2634 (1990) 

Large dC  [2] 2/3 2/3 2/3 EPL 5, 709 (1988) 

Exact RG [3] 0.849 PRE 79, 040101 (2009) 

Simulations [4] 0.75-0.85 0.50(1) 0.64(2) 
PRE 48, R651 (1993), J. 

Phys 6, 3521 (1996), arxiv:
0903.3847 

Experiment [5] - - 0.65(10) Science, 259, 952 (1993) 
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  All methods are consistent with each other. 

  None show any unusual finite q behavior. 

  One of  the numerical simulations is for graphene – thus graphene 
would have been a great experimental device. 

  The other universal parameter implies: 

  Only 6% away from the 1st order SCSA prediction. 
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Structure of  Graphene 
  Meyer et al. [Nature, 446, 60 (2007)], have characterized suspended 

graphene sheets: 

  Showed stability. No defects were found even at strain > 10%. 

  Used TEM diffraction patterns to determine that there is a 
characteristic ripple on the surface of  100-250 Å.  

  Different groups have isolated suspended graphene far above SiO2 
substrate. 

  Guinea, Horovitz, and Le Doussal [Sol. St. Com. 149, 1140 (2009)], 
suggested a mechanism that results in ripples due to stress in the 
production process. 

  It is commonly believed that these are real inherent ripples. 

  External effects were still not ruled out, though. 

  I suggest an inherent mechanism for ripple creation due to charge 
inhomogeneities, energetically favored.  
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Atomistic simulations of  graphene 
  Los et al. [arxiv: 0903.3847] have used a carbon-carbon 

potential to calculate normal-normal correlation. 

  They found a behavior consistent with the theory of  physical 
membranes. No sign of  ripples. 
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How would ripples 
look in the normal-
normal correlation 

function? 
Los, Fasolino, Katsnelson, Nature 

Materials 6, 858 [2007]. 
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Other experiments  
  Gerringer et al., PRL 102, 076102 (2009). 

  The experiments in J. Folk’s group are not yet published, but 
show L~8nm.  
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So… 
  As graphene is a real membrane, this difference is rather 

disturbing. 

  I suggest that the origin of  this different is the additional 
degree of  freedom: the π-electrons. 

  Considering the fact that these electrons are responsible for the 
specific size of  the lattice (determine the resonant bond), such 
an effect is reasonably large. 

  How do ripples affect the electronic structure? 
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Dirac picture 
  An effective theory around the Dirac points. 

  Low momenta excitations are possible only around the Dirac 
point, thus: 

  Defining: 

  The effective Hamiltonian: 
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An effective Dirac Action 

  In Euclidean space: 
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Effects of  corrugation on the electronic structure 

  The Dirac picture is an effective picture, due to the tight-
binding Hamiltonian.  

  Thus, though attractive conceptually, it is not really a massless 
fermion in curved space (however...). 

  Possible effects: 

  Deformation energy. 

  Pseudo-magnetic gauge fields. 

  Electric gauge fields 
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Deformation Energy 
  In the presence of  corrugations, the surface area changes:  

  This changes the ion density, and thus the electron density. 

  As a result, the electron’s chemical potential is locally changed 
 an effective induced electric field: 
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Effective Gauge Field 
  The hopping integral changes due to the change in angles 

between normals and distances in the lattice. 

  Due to corrugation and ripples: 

Doron Gazit - on crystalline membranes and graphene 26 

€ 

γ = γ 0 +
∂γ
∂uij

 

 
  

 

 
  uij

August 2009 



Doron Gazit - on crystalline membranes and graphene 27 

  Thus:  

  Or… 

  With 

  

€ 

δH = ak
†bk' δγ i

ab( )e−
 
k −
 
k '( )⋅
 
R i − i

 
δ aa ⋅

 
k '

+ h.c
i
∑

 
k ,
 
k '

∑

+ bk
†bk' + ak

†ak '( ) δγ i
aa( )e−

 
k −
 
k '( )⋅
 
R i − i

 
δ ab ⋅

 
k '

i
∑

€ 

  

€ 

S = − dτ d2  x ψ σ γ 0 ∂0 + iφ  r ( )( ) + v f
 
γ ⋅
 
∂ + iγ 5

 
A  r ( )( )[ ]∫ ψσ0

β

∫
σ =1

2

∑
Deformation 
Energy + 
NNN effects 

NN effect, 
Keeping T 
invariance 

  

€ 

 
A  r ( ) =

g2

v f

  2uxy

uxx − uyy

 

 
 

 

 
       φ  r ( ) = Duii − g3

3a2

4
∇2h( )

2

g2 ~ 1− 3 eV    g3 ~ 10  eV
August 2009 



Intrinsic ripples in graphene 
  The structure of  graphene is determined by a mutual 

minimization of  the lattice free energy and the electronic one.  

  In the absence of  electron inhomogeneities – this results in an 
elastic free energy. 

  However, allowing inhomogeneities, keeping only the 
deformation energy: 
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Intrinsic ripples in graphene 
  We estimate the electron-electron interaction by: 

  The effective screening is big, Kotov et al., PRB 78, 035119 
(2008) showed that: 

  E=3-4. 

  But, they do it perturbatively and the series does not seem to 
converge, as the fine structure is of  order 1. 
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Intrinsic ripples in graphene 

  Integrating out the in plane phonon fields and charge 
fluctuations: 

  For 3D materials, negative Young modulus means instability. 

  For 2D materials, this means inherent competition between 
bending and stretching. 
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Intrinsic ripples in graphene 
  The Dyson equations in this case: 

  Estimating Σ and Ψ in first order: 

  Searching for maximum in the normal-normal correlation 
function. 
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Size of  ripples 
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What is the meaning of  all this? 
  The best way to get some insight, is to rewrite the effective 

free-energy as: 

  The Gaussian curvature: 

    

  Let us assume that impurities contribute to the charge density 
as well: 
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The meaning 
  Naively, without a bending energy term, one expects a glass-

phase, whose ground states are solutions to the equation: 

  This is a basic difference from what was done previously, since 
they looked for a correlation in the mean curvature. 
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Electron Hole puddles 

Ldisorder~10-30 nm 
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Results 
  The electron-phonon coupling originating from the deformation 

energy competes with the electron-electron interaction. 

  Formation of  ripples correlated with electron-hole puddles is 
favored, both reproduce the experimental length scale. 

  Indeed, Graphane is found to have less corrugation, consistent with 
no corrugation. 

  Additional work is required to specify the form of  graphene in the 
presence of  few impurities.  

  The dynamics of  the electrons was neglected. 

  What about finite chemical potential? 
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Doped graphene 
  We neglect electron-electron interaction! 

  Since vf>>vph we integrate out the electronic degrees of  
freedom. 
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Feynman Diagrams for π-Electrons 

  Fermion propagator 

  Vector pot./Fermion vertex 

  Electro-chem. Pot/Fermion 
vertex 
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Integrating out the π-electrons 

  The resulting Lagrangian is pure gauge. 

  The structure is frozen to a very good approximation, thus 
polarizations can be calculated using zero frequency.  
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“Structure” Polarization operators 
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Electro-chemical “Structure” Polarization Operator 
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π Electrons contribution to the free energy 
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Elastic Free-Energy 

The effect on the shear modulus is negligible. 
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The effect of an external electro-chemical potential 

  Chemical potential leads to stress!  
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Buckling term in the elastic free energy 
  Let’s assume a tensionless membrane in a negative chemical 

potential (hole doping). 

  The stress is negative  Buckling of  graphene, as it has zero 
thickness! 

  The merit of  the buckling wave length: 
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Physical dopings 
  Chemical adsorption: 

  Gate voltage: 

  In any case ξ∼λF
1/2. 
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Conclusions 
  Graphene is an example of  a new class of  materials: electronic 

crystalline membranes, in which a strong interplay exists between the 
structure and the free electrons in the membrane. 

  The π-electrons induce: 

  Ripples due to competition between electron-electron interaction and 
electron-phonon interaction. 

  Additional stress in the presence of  a chemical potential, which can 
lead to buckling in the case of  hole doping. 

  Outlook: 

  Additional work is needed: incorporate electron-electron interactions 
without neglecting dynamics, … 

  Phase space in the presence of  impurities. 

  Effect on transport. 
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