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Introduction

< Crystalline membranes are solid-like structures with 2D
character.

’0

*» Very common in our world:

Cytoskeleton of red blood cells — whose structure is vital for the
operation and stability of the cell — forms a triangular lattice.

In soft condensed matter, one can create crystalline lattices by
polymerizing liquid interfaces.

In condensed matter layered materials of tens to hundreds of
layers.

However — the 1solation of graphene, and then of other single
layers, has conquered the final frontier — with many
implications.

Nelson, Piran, Weinberg (eds.), “étatistical mechanics of membrahes and surfaces’,’,(2(504). =
Novoselov et al. Science, 306, 666 (2004) ; PNAS, 102, 10451 (2005). — , ———



Introduction (2)
se Thus:

Only one atom thick, graphene should represent the ultimate
crystalline membrane, and can be used as a simple model,
where calculations are feasible.

The fact that graphene can be used to construct nanometer-sized
electronic applications, has only enhanced the need of a
profound understanding of its structure, which is a critical
ingredient in the design and quality control of such applications.

\/

% However,

Experiments show that graphene possesses intrinsic ripples, of
sizes 100-300 A.

Theory predicts a scale invariant cascade of corrugations.

< What 1s the origin of this difference?
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Outline
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Physical Crystalline Membranes

R

*» Membranes are D dimensional entities, embedded 1n a d
dimensional world.

*» Physical membranes: D=2, d=3.

» Crystalline membranes are built of a lattice with fixed
connectivity.

» The main question: does a flat phase exist? What is its
structure?

Is the Mermin-Wagner theorem violated?

L)

L)

> Phase stability is a long wavelength question, thus continuum
theory.
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The flat phase of a crystalline membrane

R

* We need to describe an almost flat phase in the continuum.

\/

< We use the Monge representation:
Describe a deviation from the flat phase by:

= (ftl,...,uq,le,...,hd_g) = (ﬁ,h)

145
 in—plane  out—of —plane
The metric 1s:

g =0 dul di s 100D
the strain tensor:

147 fRi 1
U, = 5(01.14]. + o"jul.) + Eaih *d;h +5&iuk&juk

y

We expand around a flat surface, keeping leading orders in A
and u.
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The flat phase of a crystalline membrane (2)
In addition, bending the membrane costs energy.

°F
ox,0X ;

For small deformations, the energetics 1s a sum of bending energy
and elastic energy:

f d°x { (TrC)" + K| (TrC) - Te(C?) ]+

+A(Tru) + ZMTr(uz)}

This can be expressed using the curvature tensor: C, =7

Note:
Linear terms are not included as the membrane , _ 9., _ o
is assumed to be free. g e
Cross terms break the symmetry between the two sides of the
membrane.

The Gaussian curvature energy 1s invariant under small deformations
for D=2, thus not important for the structure.

August 2009 Doron Gazit - on crystalline membranes and graphene



The flat phase of a crystalline membrane (3)

Thus we will focus on the following free energy:

hig 1 D= 2) 2 2 2
Fli,h]= Ef d x[K(V h) + Mu,) + ZM(uij) |
For a bulk 3-d material, small perturbations are given in terms of the

elastic part only, characterized by u;, and A;, (or equivalently the
Young modulus K, and the Poisson ratio v,).

For a physical membrane with a lateral size 4:

4 A ;
= M(M-l- ) =hK,, v=v,, K= : K3d2
2u+ A 12(1-v?)
The height of the membrane: 4 _ \/12(1_V2)£

0

Thus, the height of graphene 1s about 1 Angstrom, 1.e. less than the
lattice size!

Graphene, in the continuum limit is truly the ultimate membrane!

August 2009 Doron Gazit - on crystalline membranes and graphene 8



The flat phase of a crystalline membrane (4)

k,T
% The Green’s function of the 4 field: (2(a)k(-4))=L; .., (O
With the effective bending rigidity kz(4) :
_1 D~
< C — the roughness exponent: <\h\2> = f s

(2777)D Kg (Q)C]4

% The bending rigidity x.(q) ~ ¢" n=4-D-2C.

Tl i q—0
* In principal, one can define an elasticity exponent: A, y ~ ¢

< From Ward identities n, =4 - D -2n

» Experimentally, O0<C <1 , which means that 4 fluctuations
are divergent. But normal-normal fluctuations. ..

o Vh _< ol 2 Ls dzé q2 L
1+ (9m) gl b ( g

275)2 KR(Q)Cf Lo

Thus, an asymptotically flat phase.

August 2009 Doron Gazit - on crystalline membranes and graphene 9
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The flat phase of a crystalline membrane (5)

Thus we will focus on the following free energy:

Flih] = [ a’s[x(V*h)" + 2u,)" + 2u(u,)']

The in-plane phonon fields enter quadratically — thus can be
integrated out:

1 dI)"
Fegslh] = om)P {kq*|hg]*+ (2)

def de' R(I))(E,lp,q)
(‘br)”/ emP a@—D) ' haihieh e o

The effective four-leg interaction:

_|..

Zp)\

RV (E.F, @) = 2u(RP™ @F )+ L= (RP™ (R) (P (F)




L)

L)

L)

L)

L (4

The flat phase of a crystalline membrane (5)

What 1s the relevant perturbation scheme?

Expand in the number of bubbles, implying that the elastic
interaction is small compared to the bending energy.

. i i
By power counting this 1s true only for g>> ’f{ — , thus not
applicable for the structure issue.

A different scheme hides 1n the fact:
Every interaction contributes a factor 1/d.=1/(d-D).
Every h field propagator adds d.=d-D.

Thus, a relevant perturbation scheme 1s 1n powers of 1/d.
Topologically, diagrams contributing to order # in perturbation

theory fulfill the condition: n=Ng-L,, (Ng- number of
interactions, L,-number of loops).

August 2009 Doron Gazit - on crystalline membranes and graphene 11



Physical Crystalline Membranes

% The interaction 1s separable:

R(Q)(l;, K q) = Ko[éx/g]z[(jxlg’]z

/

< Feynman diagrams: ") h propagator

——————— Interaction propagator

. k
—31d > kP .
7" Interaction vertex
q—k

. 2 v

% Dysonequations: ) = 14 (%) X(q) ylg) = hR){(Q)
| 1 : K

A7 = 145 (q—;> Uig)  z2(q) = [R('E)@

_ KokpT . |
q 0O — o2 Doron Gazit - on crystalline membranes and graphene 12



Self Consistent Screening Approximation

<+ SCSA 1s an extension of a consistent perturbative expansion.
One replaces each propagator with the dressed propagator.

Cutting the expansion at a specific order.

<% SCSA for a first order expansion:
Le Doussal and Radzihovsky, PRL 69, 1209 (1992).

% SCSA for a second order expansion:
DG, arxiv: 0907.3718 (2009).

August 2009 Doron Gazit - on crystalline membranes and graphene 13



SCSA general results
) Ib_ f\_

(5) :
\. - ’

» The scaling relationt), =4 — D - 217 holds to all orders.

% At any order the SCSA equations: 1 = 20Yo ‘o (Zoyo_ .

oand y are polynomials in zy,2. 1 = 20Yq 2;/)( 20Y0
< For D>2, the long-wavelength Poisson ratio is -1/3.
% The first order SCSA coincides with:

First order expansion in 4-D.

d=D

Large d, expansion.

August 2009 Doron Gazit - on crystalline membranes and graphene
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Second order SCSA for physical crystalline membranes

R

* Second order - a naive 2-loop expansion or a 1/d-? expansion?

(a) ~
o \ "
T C—— é - :
Ceu? \ . : ’
-~

O (DG

» INo solution for a naive 2-loop expansion!
<+ Thus, the //d, character of the expansion 1s essential.

» However, even though d-=1, the results are very close: C
changes only by 2%.

< One should try and check if this still coincides with the &2
expansion, as this will give an indication of the error.

August 2009 Doron Gazit - on crystalline membranes and graphene 15



It order SCSA  0.821... 0.358...  0.590... PRL, 69, 1209 (1992)

27d order SCSA  0.789... 0.421... 0.605... This work

¢ Expansion [1] 0.96 0.08 0.52 PRL 60, 2634 (1990)
Large d. [2] 2/3 2/3 2/3 EPL 5, 709 (1988)
Exact RG [3] 0.849 PRE 79, 040101 (2009)

PRE 48, R651 (1993), J.
Simulations [4] 0.75-0.85 0.50(1) 0.64(2) Phys 6, 3521 (1996), arxiv:
0903.3847

Experiment [5] i i 0.65(10)  Science, 259, 952 (1993)
s All methods are consistent with each other.

< None show any unusual finite g behavior.

< One of the numerical simulations is for graphene — thus graphene
would have been a great experimental device.

. > ¢ .1 |k;TK,(q
< The other universal parameter implies: hmj/ Y qg i 3.573(1)

q—>0q
Only 6% away from the 1% order SCSA prediction.

August 2009 Doron Gazit - on crystalline membranes and graphene 16



Structure of Graphene

< Meyer et al. [Nature, 446, 60 (2007)], have characterized suspended
graphene sheets:

L)

Showed stability. No defects were found even at strain > 10%.

Used TEM diffraction patterns to determine that there 1s a
characteristic ripple on the surface of 100-250 A.

< Different groups have 1solated suspended graphene far above S10,
substrate.

Guinea, Horovitz, and Le Doussal [Sol. St. Com. 149, 1140 (2009)],
suggested a mechanism that results 1n ripples due to stress in the
production process.

% It 1s commonly believed that these are real inherent ripples.
< External effects were still not ruled out, though.

< Isuggest an inherent mechanism for ripple creation due to charge
inhomogeneities, energetically favored.

August 2009 Doron Gazit - on crystalline membranes and graphene 17



Atomistic sitmulations of graphene

R

» Los et al. [arxiv: 0903.3847] have used a carbon-carbon
potential to calculate normal-normal correlation.

L)

» They found a behavior consistent with the theory of physical
membranes. No sign of ripples.

L)

10__ -1|15\J | I.I2III| | | | IIIIII | T
=g N7
e
z
@ 0.1
O F ——N=37888
- N=19504
0'015 N=12096 \
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Other experiments

% Gerringer et al., PRL 102, 076102 (2009).

/

<+ The experiments in J. Folk’s group are not yet published, but
show L~8nm.

August 2009 Doron Gazit - on crystalline membranes and graphene 20



So...

<+ As graphene 1s a real membrane, this difference is rather
disturbing.

» I suggest that the origin of this different 1s the additional
degree of freedom: the m-electrons.

< Considering the fact that these electrons are responsible for the
specific size of the lattice (determine the resonant bond), such
an effect 1s reasonably large.

<+ How do ripples affect the electronic structure?

August 2009 Doron Gazit - on crystalline membranes and graphene 21
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L)

)

L)

L)
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Dirac picture

An effective theory around the Dirac points.

Low momenta excitations are possible only around the Dirac
point, thus:

LRR R iR R
a,, =e diie a,,
b. =e bm + e bw
! K
Defining: G _| %o
io -
bK
10

The effective Hamiltonian:

SRLIN

- —ihvfz f dxdy(li{,m(?)(_j' VIPK(F) + \IJK'T(F)&* : V‘PK'(f))

(0]

Semenoff 1984



An etfective Dirac Action

< In Euclidean space:

S = —hi [Pav [ &%, o, B=
o=1

il ke
w(; %3 lpf‘

{VM>VV}=25W ; )/O=O3><G3; y' =0, x1

1
k, T

g diag(l,vf ,vf)

August 2009 Doron Gazit - on crystalline membranes and graphene



Effects of corrugation on the electronic structure

<+ The Dirac picture 1s an effective picture, due to the tight-
binding Hamiltonian.

» Thus, though attractive conceptually, it is not really a massless
fermion in curved space (however...).

» Possible effects:
Deformation energy.
Pseudo-magnetic gauge fields.

Electric gauge fields

August 2009 Doron Gazit - on crystalline membranes and graphene 24



Deformation Energy

<+ In the presence of corrugations, the surface area changes:
2
oS~a'u,
< This changes the 10n density, and thus the electron density.

% As aresult, the electron’s chemical potential 1s locally changed
=>» an effective induced electric field:

V(r)=Du, ; D=20-30eV

l

August 2009 Doron Gazit - on crystalline membranes and graphene 23



Effective Gauge Field

<+ The hopping integral changes due to the change in angles
between normals and distances in the lattice.

< Due to corrugation and ripples:

August 2009 Doron Gazit - on crystalline membranes and graphene
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+(blb, + azak,)z oyt Vi E

O

L)

G t3 [ 55 [Pl )5+

A(F) =22 itie ¢(7) = Du,, - 3—‘lz(vzh)2
< With i e i

g, ~1-3 ¢V g, ~10 eV

August 2009 Doron Gazit - on crystalline mémbranes and graphene 21



Intrinsic ripples 1n graphene

» The structure of graphene 1s determined by a mutual
minimization of the lattice free energy and the electronic one.

*» In the absence of electron inhomogeneities — this results 1n an
elastic free energy.

» However, allowing inhomogeneities, keeping only the
deformation energy:

1
F[U,h, 672’] — E€€[572] + §/d2f:‘€(Ah)2 -+

+ /dQSI?' [Q,uufj + \us; + 2Du;;on] .

1
2

August 2009 Doron Gazit - on crystalline membranes and graphene 28



Intrinsic ripples 1n graphene

<+ We estimate the electron-electron interaction by:

/ / Py @@ _ 2w / 27 [on(@)?
7 — 1 2E (2m)2 ¢

% The effective screening is big, Kotov et al., PRB 78, 035119
(2008) showed that:

£=3-4.

But, they do it perturbatively and the series does not seem to
converge, as the fine structure 1s of order 1.

August 2009 Doron Gazit - on crystalline membranes and graphene 29



Intrinsic r1

[2
Flu, h,on] = %/() )2

+ Rq (@) + 2pluiz|* + Ng)|uil*}

< Integrating out the in plane phonon fields and charge
fluctuations:

DEq

2
ANg) = A — 2]21—;2(1

_ 2p+AX g

K(q) — K, HEA qo

1 d*q 417,12 2 1-%
Ferrlh] = 5 | @) {fﬁjq h]® + K(q)®*}
So = ?;: S

eZ(2p+A)

< For 3D materials, negative Young modulus means instability.

< For 2D materials, this means inherent competition between
bending and stretching.

August 2009 Doron Gazit - on crystalline membranes and graphene 30



L)

Intrinsic ripples 1n graphene

» The Dyson equations 1n this case:

ale) _ 1+(q;)22(q)

(58)" - (52) 45w

% Estimating ¥ and W 1n first order:

L)

<

d2A K( qL |qu|4
KokpT

» Searching for maximum in the normal-normal correlation

function.

August 2009 Doron Gazit - on crystalline membranes and graphene
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What 1s the meaning of all this?

\/
0.0

The best way to get some insight, 1s to rewrite the effective
free-energy as:

1 i D?
Fesslh,én] = 5/(1’2:1_3'572, ep — on | +

% / % {K(Ah) + Ko [A71 (S(@) - «(@))]" ]

—_

The Gaussian curvature: S[h(z)] = %( Adij — 0;05)0ih0jh
c(T) = —2(#1_7”\) Aon(x)

Let us assume that impurities contribute to the charge density

as well: Aqﬁ _ 47T’0

August 2009 Doron Gazit - on crystalline membranes and graphene 33



The meaning

< Naively, without a bending energy term, one expects a glass-
phase, whose ground states are solutions to the equation:

SIh(@) = T ep

/

< This 1s a basic difference from what was done previously, since
they looked for a correlation in the mean curvature.

RB 79, 205411 (2009)




Y (pm)

Electron Hole puddles

Ldz’sorderN] 0-30 nm

Counts (arb. urits)

10M N,y (1011 cm-2)

o
(z-wa) %y

_1011

Martin et al., Nature Physics, 4, 144 (2008).
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Results

The electron-phonon coupling originating from the deformation
energy competes with the electron-electron interaction.

Formation of ripples correlated with electron-hole puddles 1s
favored, both reproduce the experimental length scale.

Indeed, Graphane 1s found to have less corrugation, consistent with
no corrugation.

Elias et al., Science, 323, 610 (2009).

Additional work is required to specify the form of graphene in the
presence of few impurities.

The dynamics of the electrons was neglected.

What about finite chemical potential?

August 2009 Doron Gazit - on crystalline membranes and graphene 36



Doped graphene

<+ We neglect electron-electron interaction!

S=3 [ | €50, [1 (0, i0(7) v, (741,26

\/

< Since v>>v,, we integrate out the electronic degrees of
freedom.

August 2009 Doron Gazit - on crystalline membranes and graphene
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Feynman Diagrams for w-Electrons

/

< Fermion propagator [

<+ Vector pot./Fermion vertex

Lysy

s Electro-chem. Pot/Fermion
vertex iy’

August 2009 Doron Gazit - on crystalline membranes and graphene 38



Integrating out the m-electrons

/

<+ The resulting Lagrangian 1s pure gauge.
1 1
L= EAZ.H;‘.AJ. + 5HVV2

L —>( > ol —> —>
S=B[ d’%c=pF,

/

<+ The structure 1s frozen to a very good approximation, thus
polarizations can be calculated using zero frequency.

August 2009 Doron Gazit - on crystalline membranes and graphene 39



“Structure” Polarization operators

August 2009

yaka Oyﬁ(k'l'Q)ﬁ 0-

r- I i (k + q)2 i _
r-Vaka i i (k+ q) j-
| 12 Vs (k + q)z VsV

Doron Gazit - on crystalline membranes and graphene
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Electro-chemical “Structure’ Polarization Operator

_5'00 |

1.00

? 0.50

0.10 ¢

005}

0.01 -

0.05 0.10 0.50 1.00 5.00 10.00
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nt Electrons contribution to the free energy

2
Fr f 4hv [V+

XX yy

August 2009 Doron Gazit - on crystalline membranes and graphene
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Elastic Free-Energy

The effect on the shear modulus 1s negligible.

August 2009 Doron Gazit - on crystalline membranes and graphene 43



The effect of an external electro-chemical potential

A ( jnq) kg hf + 2a)w,)" +2u(w,)" +2D(). TV )3V,
OF | u,h| =
Fli,h]=D [ i

2 [HV (q;[a’)(uii)_q oV, ]

<+ Chemical potential leads to stress!

In2
ik 4 DIn sV

n(hvf)zﬁ
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Buckling term in the elastic free energy

» Let’s assume a tensionless membrane 1n a negative chemical
potential (hole doping).

» The stress is negative =» Buckling of graphene, as it has zero
thickness!

» The merit of the buckling wave length:

P2 [ deafs(on) o (o)

! 2 ‘T‘
O=5—F=Kq4h+tq2h=><T<O (it i
Oh :

720 g =0

§_2n\/ﬂ(hvf)2/31< _144A.( T )_1/2.( D )—1/2.( 5V )—1/2
4DIn2 -6V 300°K 20eV 100meV
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Physical dopings

% Chemical adsorption:

-1/2 -1/2 -1/2 -1/2
-onn gkl ]l T3
300°K 30eV 200meV 20%

< (Gate voltage:
_ _1
D n| 1
30eV 1012¢m—2

Lo =
L[ =

(T O\~
¢~ 1ddA (3000K>

< In any case &~A,//2.
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Conclusions

< Graphene is an example of a new class of materials: electronic
crystalline membranes, 1n which a strong interplay exists between the
structure and the free electrons in the membrane.

s+ The m-electrons induce:

Ripples due to competition between electron-electron interaction and
electron-phonon interaction.

Additional stress in the presence of a chemical potential, which can
lead to buckling in the case of hole doping.

s  Qutlook:

Additional work 1s needed: incorporate electron-electron interactions
without neglecting dynamics, ...

L)

Phase space 1n the presence of impurities.

Effect on transport.
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