


Introduction 
  Crystalline membranes are solid-like structures with 2D 

character. 

  Very common in our world: 

  Cytoskeleton of  red blood cells – whose structure is vital for the 
operation and stability of  the cell – forms a triangular lattice. 

  In soft condensed matter, one can create crystalline lattices by 
polymerizing liquid interfaces. 

  In condensed matter layered materials of  tens to hundreds of  
layers. 

  However – the isolation of  graphene, and then of  other single 
layers, has conquered the final frontier – with many 
implications. 
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Introduction (2) 
  Thus: 

  Only one atom thick, graphene should represent the ultimate 
crystalline membrane, and can be used as a simple model, 
where calculations are feasible. 

  The fact that graphene can be used to construct nanometer-sized 
electronic applications, has only enhanced the need of  a 
profound understanding of  its structure, which is a critical 
ingredient in the design and quality control of  such applications. 

  However,   

  Experiments show that graphene possesses intrinsic ripples, of  
sizes 100-300 Å. 

  Theory predicts a scale invariant cascade of  corrugations. 

  What is the origin of  this difference? 
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Outline 
  Crystalline membranes. 

  The structure of  physical crystalline membranes within the 
self-consistent screening approximation. 

  Graphene: an electronic crystalline membrane! 

  On the correlation between charge inhomogeneities and ripples 
in graphene. 

  Spontaneous buckling of  hole doped graphene. 

  Outlook. 
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Physical Crystalline Membranes 
  Membranes are D dimensional entities, embedded in a d 

dimensional world. 

  Physical membranes: D=2, d=3.  

  Crystalline membranes are built of  a lattice with fixed 
connectivity. 

  The main question: does a flat phase exist? What is its 
structure? 

  Is the Mermin-Wagner theorem violated? 

  Phase stability is a long wavelength question, thus continuum 
theory. 
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The flat phase of  a crystalline membrane 
  We need to describe an almost flat phase in the continuum. 

  We use the Monge representation: 

  Describe a deviation from the flat phase by: 

  The metric is: 

the strain tensor: 

  We expand around a flat surface, keeping leading orders in h 
and u.  
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The flat phase of  a crystalline membrane (2) 
  In addition, bending the membrane costs energy. 

  This can be expressed using the curvature tensor: 

  For small deformations, the energetics is a sum of  bending energy 
and elastic energy: 

  Note:  

  Linear terms are not included as the membrane  
is assumed to be free.  
Cross terms break the symmetry between the two sides of  the 
membrane.  

  The Gaussian curvature energy is invariant under small deformations 
for D=2, thus not important for the structure.  
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The flat phase of  a crystalline membrane (3) 
  Thus we will focus on the following free energy: 

  For a bulk 3-d material, small perturbations are given in terms of  the 
elastic part only, characterized by µ3d, and λ3d (or equivalently the 
Young modulus K3d and the Poisson ratio ν3d). 

  For a physical membrane with a lateral size h: 

  The height of  the membrane: 

  Thus, the height of  graphene is about 1 Angstrom, i.e. less than the 
lattice size! 

  Graphene, in the continuum limit is truly the ultimate membrane!  
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The flat phase of  a crystalline membrane (4) 
  The Green’s function of  the h field: 

With the effective bending rigidity 

  ζ – the roughness exponent: 

  The bending rigidity                ,                           . 

  In principal, one can define an elasticity exponent: 

  From Ward identities 

  Experimentally,                            , which means that h fluctuations 
are divergent. But normal-normal fluctuations… 

Thus, an asymptotically flat phase.  
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The flat phase of  a crystalline membrane (5) 
  Thus we will focus on the following free energy: 

  The in-plane phonon fields enter quadratically – thus can be 
integrated out: 

  The effective four-leg interaction: 
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The flat phase of  a crystalline membrane (5) 
  What is the relevant perturbation scheme? 

  Expand in the number of  bubbles, implying that the elastic 
interaction is small compared to the bending energy. 

  By power counting this is true only for                   , thus not 
applicable for the structure issue. 

  A different scheme hides in the fact: 

  Every interaction contributes a factor 1/dC=1/(d-D). 

  Every h field propagator adds dC=d-D. 

  Thus, a relevant perturbation scheme is in powers of  1/dC. 
Topologically, diagrams contributing to order n in perturbation 
theory fulfill the condition: n=NR-Lh, (NR- number of  
interactions, Lh-number of  loops). 
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Physical Crystalline Membranes 
  The interaction is separable: 

  Feynman diagrams: 

  Dyson equations: 
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Self  Consistent Screening Approximation 
  SCSA is an extension of  a consistent perturbative expansion. 

  One replaces each propagator with the dressed propagator. 

  Cutting the expansion at a specific order. 

  SCSA for a first order expansion:  

  Le Doussal and Radzihovsky, PRL 69, 1209 (1992). 

  SCSA for a second order expansion: 

  DG, arxiv: 0907.3718 (2009). 
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SCSA – general results 

  The scaling relation                           holds to all orders. 

  At any order the SCSA equations: 

  σ and ψ are polynomials in z0y0
-2. 

  For D>2, the long-wavelength Poisson ratio is -1/3. 

  The first order SCSA coincides with: 

  First order expansion in 4-D. 

   d=D 

  Large dC expansion. 
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Second order SCSA for physical crystalline membranes 

  Second order - a naïve 2-loop expansion or a 1/dC
2 expansion? 

  No solution for a naïve 2-loop expansion! 

  Thus, the 1/dC character of  the expansion is essential. 

  However, even though dC=1, the results are very close: ζ 
changes only by 2%. 

  One should try and check if  this still coincides with the ε2  
expansion, as this will give an indication of  the error. 
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Method η ηu ζ References 

1st order SCSA 0.821… 0.358… 0.590… PRL, 69, 1209 (1992) 

2nd order SCSA 0.789… 0.421… 0.605… This work 

ε Expansion [1] 0.96 0.08 0.52 PRL 60, 2634 (1990) 

Large dC  [2] 2/3 2/3 2/3 EPL 5, 709 (1988) 

Exact RG [3] 0.849 PRE 79, 040101 (2009) 

Simulations [4] 0.75-0.85 0.50(1) 0.64(2) 
PRE 48, R651 (1993), J. 

Phys 6, 3521 (1996), arxiv:
0903.3847 

Experiment [5] - - 0.65(10) Science, 259, 952 (1993) 
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  All methods are consistent with each other. 

  None show any unusual finite q behavior. 

  One of  the numerical simulations is for graphene – thus graphene 
would have been a great experimental device. 

  The other universal parameter implies: 

  Only 6% away from the 1st order SCSA prediction. 

€ 

lim
q→0

1
q

kBTKR q( )
κR
2 q( )

= 3.573 1( )



Structure of  Graphene 
  Meyer et al. [Nature, 446, 60 (2007)], have characterized suspended 

graphene sheets: 

  Showed stability. No defects were found even at strain > 10%. 

  Used TEM diffraction patterns to determine that there is a 
characteristic ripple on the surface of  100-250 Å.  

  Different groups have isolated suspended graphene far above SiO2 
substrate. 

  Guinea, Horovitz, and Le Doussal [Sol. St. Com. 149, 1140 (2009)], 
suggested a mechanism that results in ripples due to stress in the 
production process. 

  It is commonly believed that these are real inherent ripples. 

  External effects were still not ruled out, though. 

  I suggest an inherent mechanism for ripple creation due to charge 
inhomogeneities, energetically favored.  
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Atomistic simulations of  graphene 
  Los et al. [arxiv: 0903.3847] have used a carbon-carbon 

potential to calculate normal-normal correlation. 

  They found a behavior consistent with the theory of  physical 
membranes. No sign of  ripples. 
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How would ripples 
look in the normal-
normal correlation 

function? 
Los, Fasolino, Katsnelson, Nature 

Materials 6, 858 [2007]. 
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Other experiments  
  Gerringer et al., PRL 102, 076102 (2009). 

  The experiments in J. Folk’s group are not yet published, but 
show L~8nm.  
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So… 
  As graphene is a real membrane, this difference is rather 

disturbing. 

  I suggest that the origin of  this different is the additional 
degree of  freedom: the π-electrons. 

  Considering the fact that these electrons are responsible for the 
specific size of  the lattice (determine the resonant bond), such 
an effect is reasonably large. 

  How do ripples affect the electronic structure? 
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Dirac picture 
  An effective theory around the Dirac points. 

  Low momenta excitations are possible only around the Dirac 
point, thus: 

  Defining: 

  The effective Hamiltonian: 
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An effective Dirac Action 

  In Euclidean space: 
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Effects of  corrugation on the electronic structure 

  The Dirac picture is an effective picture, due to the tight-
binding Hamiltonian.  

  Thus, though attractive conceptually, it is not really a massless 
fermion in curved space (however...). 

  Possible effects: 

  Deformation energy. 

  Pseudo-magnetic gauge fields. 

  Electric gauge fields 
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Deformation Energy 
  In the presence of  corrugations, the surface area changes:  

  This changes the ion density, and thus the electron density. 

  As a result, the electron’s chemical potential is locally changed 
 an effective induced electric field: 
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Effective Gauge Field 
  The hopping integral changes due to the change in angles 

between normals and distances in the lattice. 

  Due to corrugation and ripples: 
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Intrinsic ripples in graphene 
  The structure of  graphene is determined by a mutual 

minimization of  the lattice free energy and the electronic one.  

  In the absence of  electron inhomogeneities – this results in an 
elastic free energy. 

  However, allowing inhomogeneities, keeping only the 
deformation energy: 
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Intrinsic ripples in graphene 
  We estimate the electron-electron interaction by: 

  The effective screening is big, Kotov et al., PRB 78, 035119 
(2008) showed that: 

  E=3-4. 

  But, they do it perturbatively and the series does not seem to 
converge, as the fine structure is of  order 1. 
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Intrinsic ripples in graphene 

  Integrating out the in plane phonon fields and charge 
fluctuations: 

  For 3D materials, negative Young modulus means instability. 

  For 2D materials, this means inherent competition between 
bending and stretching. 
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Intrinsic ripples in graphene 
  The Dyson equations in this case: 

  Estimating Σ and Ψ in first order: 

  Searching for maximum in the normal-normal correlation 
function. 
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Size of  ripples 
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What is the meaning of  all this? 
  The best way to get some insight, is to rewrite the effective 

free-energy as: 

  The Gaussian curvature: 

    

  Let us assume that impurities contribute to the charge density 
as well: 
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The meaning 
  Naively, without a bending energy term, one expects a glass-

phase, whose ground states are solutions to the equation: 

  This is a basic difference from what was done previously, since 
they looked for a correlation in the mean curvature. 
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Electron Hole puddles 

Ldisorder~10-30 nm 
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Results 
  The electron-phonon coupling originating from the deformation 

energy competes with the electron-electron interaction. 

  Formation of  ripples correlated with electron-hole puddles is 
favored, both reproduce the experimental length scale. 

  Indeed, Graphane is found to have less corrugation, consistent with 
no corrugation. 

  Additional work is required to specify the form of  graphene in the 
presence of  few impurities.  

  The dynamics of  the electrons was neglected. 

  What about finite chemical potential? 
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Doped graphene 
  We neglect electron-electron interaction! 

  Since vf>>vph we integrate out the electronic degrees of  
freedom. 
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Feynman Diagrams for π-Electrons 

  Fermion propagator 

  Vector pot./Fermion vertex 

  Electro-chem. Pot/Fermion 
vertex 
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Integrating out the π-electrons 

  The resulting Lagrangian is pure gauge. 

  The structure is frozen to a very good approximation, thus 
polarizations can be calculated using zero frequency.  
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“Structure” Polarization operators 
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Electro-chemical “Structure” Polarization Operator 
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π Electrons contribution to the free energy 
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Elastic Free-Energy 

The effect on the shear modulus is negligible. 
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The effect of an external electro-chemical potential 

  Chemical potential leads to stress!  
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Buckling term in the elastic free energy 
  Let’s assume a tensionless membrane in a negative chemical 

potential (hole doping). 

  The stress is negative  Buckling of  graphene, as it has zero 
thickness! 

  The merit of  the buckling wave length: 
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Physical dopings 
  Chemical adsorption: 

  Gate voltage: 

  In any case ξ∼λF
1/2. 
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Conclusions 
  Graphene is an example of  a new class of  materials: electronic 

crystalline membranes, in which a strong interplay exists between the 
structure and the free electrons in the membrane. 

  The π-electrons induce: 

  Ripples due to competition between electron-electron interaction and 
electron-phonon interaction. 

  Additional stress in the presence of  a chemical potential, which can 
lead to buckling in the case of  hole doping. 

  Outlook: 

  Additional work is needed: incorporate electron-electron interactions 
without neglecting dynamics, … 

  Phase space in the presence of  impurities. 

  Effect on transport. 
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