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Abstract

With the advent of LIGO in 2002, and with
subsequent expansions and improvements, sci-
entists can use gravitational waves to probe
deeper into the universe than previously pos-
sible. As researchers cast a bigger net, they in-
crease the chances of discovering objects with
exotic compositions. This work character-
izes one possible exotic object: mixed-phase,
strange quark stars or nuggets. An equation
of state is derived by modeling the object as
a relativistic Fermi gas; this equation leads
to solutions the Tolman-Oppenheimer-Volkov
(TOV) Equations. More important, this in-
vestigation explores the methods for predict-
ing characteristics such as mass and radii of
hypothetical exotic objects in the universe.

1 Introduction

First observed over fifty years ago, neutron stars are of-
ten described as astrophysical laboratories. Their high
density (∼1.5 solar masses and 10 km in diameter)
presents opportunities to test theories at the frontiers
of nuclear physics, particle physics, and astrophysics
as researchers attempt to characterize exotic matter
under extreme conditions. However, neutron stars are
just one animal in a zoo of hypothetical exotic objects
in the universe. As density increases within a neutron
star, the quarks composing the protons and neutrons
in a neutron star break out of their triplets. The re-
sulting matter is a dense soup of quarks, gluons, and
electrons, a quark star. The focus of this paper is a
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specific quark star composed of strange quarks and
a mixed phase. This star and countless other theo-
retically constructed objects exist within the density
range of neutron star to black hole. Their discovery by
LIGO and ensuing study would provide further insight
regarding exotic matter and new testing grounds for
nuclear, particle, and astrophysical theories.

2 Natural Units

Before modeling the composition of mixed-phase,
strange quark stars, a brief discussion of natural units
is in order. In the realm of nuclear and particle physics,
the prevalence of Planck’s constant ℏ and the speed of
light c can make calculations messy and cumbersome.
In the interest of efficiency and ease of work, a unit
system is adopted in which

ℏ = c = 1.

While expressions with ℏ and c become easier to work
with, vigilance is still required, for the units on other
quantities change also within the system:

Mass, Energy, Momentum ⇒ MeV

Force ⇒ MeV 2

Charge Density ⇒ MeV 3

Pressure, Energy Density ⇒ MeV 4 or
MeV

fm3

Length, Time ⇒ MeV −1

Natural units are one of many systems used in various
settings. For the remainder of this paper, natural units
will be used.

1



3 Star Structure:
Tolman-Oppenheimer-Volkov
Equation

The approach to star structure here will be Newtonian.
Consider a uniform sphere in equilibrium[1], and con-
sider a small box within the sphere. The net forces
acting on the box are given below in Figure 1:

Figure 1: Forces acting within a uniform sphere in
hydrostatic equilibrium.

The important thing to note is that the sum of forces
in equilibrium must be zero. This fact, along with
the fact that energy density and mass density are re-
lated by ϵ(r) = ρ(r), yields an equation for the rate of
change of the pressure within the object as one moves
out towards its surface:

∑
F = P (r)A− P (r +∆r)A− GM(r)ρ(r)A∆r

r2
= 0

∆P = P (r +∆r)− P (r) = −GM(r)ρ(r)

r2
∆r

dP

dr
= −GM(r)ϵ(r)

r2

To find the rate of change of the mass moving away
from the center, consider thin shells of the sphere in-
stead of small boxes:

∆M = M(r+∆r)−M(r) = Mshell = Vshellρ(r) = 4πr2ϵ(r)∆r

dM

dr
= 4πr2ϵ(r)

These are the Newtonian TOV Equations. While these
equations work in non-relativistic scenarios, the ex-
treme pressure and energy density found in hypothet-
ical objects requires general relativity. Solving Ein-
stein’s field equations for a uniform sphere yields the
relativistic TOV Equations:

dP

dr
= −

Gϵ(r)M(r)

r2

[
1 +

P (r)

ϵ(r)

] [
1 +

4πr3P (r)

M(r)

] [
1 −

2GM(r)

r

]−1

dM

dr
= 4πr2ϵ(r)

Note that the first factor in the pressure equation
is the Newtonian equation. The other factors are
general relativistic corrections.

In both cases, the TOV and mass equations represent
a coupled system with no analytical solution. Further-
more, there are more unknowns than equations. How-
ever, an equation of state for the material composing
the object, specifically one relating pressure and en-
ergy density (P (ϵ)), will allow for numerical solutions.
The numerical solutions to the coupled system are pos-
sible masses and radii of the object. For this pur-
pose, a 4th order Runge-Kutta Solver was constructed
in C++, and a detailed description of the numerical
method can be found in [1]. In short, a model of the
matter composing the object leads to a solution of the
TOV equation.

4 Object of Interest: Mixed-Phase,
Strange Quark Nuggets

This project investigates a mixed-phase, strange quark
star [2][3]. This object is a sphere composed of two
phases (see figure 2): At the core is a dense, positively-
charged, homogeneous soup of gluons and up, down,
and strange quarks, with electrons moving throughout.
The phase is positively-charged due in part to the mass
of the strange quark (95 MeV) dwarfing those of the up
(2.4 MeV) and down quarks (4.8 MeV). Outside the
inner phase, densely packed electrons extend all the
way to the surface. This phase is negatively-charged.
The object is constructed to have a global net zero
charge. Using these assumptions, one can find possible
masses and radii of a mixed-phase, strange quark star.

5 Modeling the Object

5.1 Chemical Potential Parametrization

In physics problems, especially problems with phases
in equilibrium, it is often helpful to figure out what is
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Figure 2: Mixed-phase, strange quark star compo-
sition. The inner phase exhibits a positive charge
density, and the outer phase exhibits a negative
charge density.

invariant or conserved with respect to some process.
Once conserved quantities are identified, parameters
associated with those quantities may be introduced,
and the problem can be framed with respect to those
parameters. That is the case here. Within the strange
object, the main equilibrium process is:

d ⇆ u+ e− + νe

Moving to the right is beta decay, in which a down
quark decays into an up quark and an electron (with
mass 0.511 MeV). The extra energy is carried away
by an antineutrino and kinetic energy of the products.
Moving to the left is electron capture. In less dense
stars, electron capture entails a proton and electron
combining to form a neutron; however, the quarks
in the strange star are not necessarily confined into
protons and neutrons. Thus, up and down quarks
are found in the equation instead. The neutrinos in
this equilibrium may be disregarded, as they are not
associated with quantities of interest.

There are two conserved quantities of interest in the
equilibrium process above: One is baryon number,
given by 1

3 multiplied by the difference in number of
quarks and number of anti-quarks.

Bi =
1

3
(nqi − nq̄i)

Protons and neutrons have baryon number 1, as they
each consist of a trio of quarks, with different numbers
up and down. A π0 meson has baryon number zero,
as it consists of a quark-anti-quark pair.

The other conserved quantity of interest is electric
charge. Quarks possess a charge of some integer
multiple of 1

3 , and electrons possess a charge of −1.

It is now possible to frame the problem around these
two parameters. Associate with each particle involved
a chemical potential energy µi (energy per particle),
given by the sum of the product of baryon number
Bi and baryon chemical potential µB (in energy per
baryon) and the product of charge Qi and charge
chemical potential µe (energy per unit charge):

Figure 3: Parametrized chemical potentials of quarks
and electrons. The particle energies are now in terms
of baryon and charge chemical potential.

5.2 Relativistic Fermi Gas

The contents of the strange object will be modeled
as a relativistic, zero-temperature Fermi gas. The
zero-temperature model is applicable because the
thermal pressure exerted by the quarks and electrons
is negligible compared with the degeneracy pressure
at temperatures below 1012 K. Neutron stars, which
burn at around 108 K initially before cooling, fall
well short of the mark. Furthermore, strange stars
are denser than neutron stars, so the degeneracy
pressure should be greater. It is therefore safe to use
a zero-temperature model.

A relation between the momentum of each particle
and the chemical potential energy parameters is useful
in Fermi gas model calculations. The general version
of the relativistic mass-energy relationship E = mc2,
with chemical potential energy µi taking the place of
E, will provide just that:

E2 = (pc)2 + (mc2)2 = p2 +m2
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µi =
√

p2 +m2
i

pi =
√
µ2
i −m2

i =
√
(BiµB +Qiµe)2 −m2

i

5.3 Reduction to One Parameter

Next, narrow down from two parameters to one pa-
rameter. The values of all quantities will then depend
solely on the value of the baryon chemical potential
µB . Use the assumption that the strange object is in
a Gibbs Equilibrium; the pressure of the two phases
must be equal. In the inner phase (see figure 2), pres-
sure contributions come from the quarks and electrons,
while in the outer phase, only electrons are present:

Pinner = Pouter

Pe− + Pquarks = Pe−

Pquarks(µB , µe) =

 ∑
i=u,d,s

PFi

−B = 0

In the above equation, B refers to the bag constant[4]
in quantum chromodynamics (QCD)[5]. The bag
constant is a value related to the bag model of quark
confinement[6], and its presence in calculations of
quark pressures is necessary. Further discussion of
this concept will not occur; it is very interesting, but
outside the scope of this project. Use for the bag
constant a value of B

1
4 = 200 MeV [7]. Then, the sum

of pressures being equal to zero is an equation one
can numerically solve to find a function µe(µB).

The pressure of each constituent comes from the Fermi
gas model. The pressures are given by the equations
below[8]. xi has only been defined to make the equa-
tions more concise.

PFi
=

gi
6π2

∫ pFi

0

p4√
p2 +m2

i

dp

PFi
=

gim
4
i

16π2

[
xi(

2

3
x2
i − 1)

√
1 + x2

i + arcsinh(xi)

]

xi =
pFi

mi
=

√
(BiµB +Qiµe)2 −m2

i

mi

The factor gi is the degeneracy of each particle at
zero temperature[9]. The Pauli Exclusion Principle
states no two particles can share the same quantum
numbers. As the levels fill with electrons from the
ground state to the Fermi level, the exclusion principle
allows two particles at each energy, one spin up and
one spin down. Quarks, however, have an additional
quantum number given by color charge. Each quark
can have color red, blue, or green, in addition to its
spin. Thus, for each energy level, there are allowed
six different quarks.

Figure 4: Fermi Gas Degeneracy at T = 0 K.

Now, all of the necessary information is available to
calculate the pressures. This yields the equation be-
low:

8π2B

3
=

∑
i=u,d,s

m4
i

[
xi(

2

3
x2
i − 1)

√
1 + x2

i + arcsinh(xi)

]

The solution µe vs. µB may then be plotted:

Figure 5: µe vs. µB for strange object matter.

Now, ∀µB ∈ [700, 1150] MeV , ∃ an associated value of
µe ∈ [0, 425] MeV . There is only one parameter, and
focus shifts to generating a curve relating pressure and
energy density. Hurray!
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5.4 Generating Pressures

Next, associate a pressure with each µB . This is as
simple as finding the pressure of the electron phase
(outer phase shell in figure 2), since the phases are in
Gibbs Equilibrium and therefore maintain equal pres-
sures:

P (µB) = PF
e−

(µe)

PF
e−

=
m4

e−

8π2

[
xe−(

2

3
x2
e− − 1)

√
1 + x2

e−
+ arcsinh(xe−)

]
With electrons, µe >> me− and xe− >> 1, so appro-
priate approximations can be made:

PFe−
(µB) ≈

m4
e−

8π2

[
xe−(

2

3
x2
e−)(xe−) + arcsinh(xe−)

]

5.5 Volume Fraction

The generation of energy densities is more compli-
cated. First, the energy density of each phase must
be found, which is easy enough with the Fermi gas
model. The more difficult task is finding the fraction
of the total volume that each phase inhabits. It
is doable, however, by enforcing the global charge
neutrality of the strange object and using a formula
for the charge density of each phase.

The positive charge density of a phase is given by a
derivative of pressure with respect to the charge chem-
ical potential:

ρ = − ∂P

∂µe

Note that, when calculating the charge density of elec-
trons, µe >> me− . With quarks, however, µe >> mi

can’t generally be said. Use the variable xe− as defined
above for conciseness:

xe− =
pFe−

me−
=

√
µ2
e −m2

e−

me−
≈ µe

me−

The calculations follow as:

ρ− =
∂PFe−

∂µe
≈

m4
e−

12π2

∂

∂µe

[
x4
e− +

3

2
arcsinh(xe−)

]

=
m4

e−

12π2

4 µ3
e

m4
e−

+
3

2

1√
1 +

µ2
e

m2
e−


ρ− ≈

m4
e−

12π2

(
4

µ3
e

m4
e−

)
=

µ3
e

3π2

The same equation yields the charge density of the
quark phase of the object:

ρ+ = − ∂

∂µe

PFe−
+

∑
i=u,d,s

PFi



ρ+ ≈ − µ3
e

3π2
−

3∑
n=0

cnµ
n
e

The formula is extraordinarily messy, so cn denotes co-
efficients, each of which is a function of baryon number
Bi, charge number Qi, masses mi, and other variables.
It is now feasible to find the volume fraction of the
quark-electron mixed phase by enforcing global charge
neutrality on the strange object:

fρ+ + ρ− = 0,

where f is defined as

f =
Volume of Quark-Electron matter

Total Volume
.

Plugging in the formulas above for charge densities
yields an expression for the volume fraction:

f = −ρ−
ρ+

=
µ3
e

3π2

µ3
e

3π2 +
∑3

n=0 cnµ
n
e

5.6 Energy Densities

Almost there. Next, calculate the energy density of
each phase using the Fermi gas model formula:

ϵi =
Ei

V
=

gi
2π2

∫ pFi

0

p2
√

p2 +m2
i dp

=
gim

3
i

16π2

[
xi(2x

2
i + 1)

√
1 + x2

i − arcsinh(xi)

]
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Recall that with electrons, µe >> me− , xe− >> 1.
Also, the degeneracy factor remains the same as de-
fined in Figure 4. Hence, the energy density of the
electron phase and the mixed phase, respectively, are
given by

ϵe− ≈ µ4
e

4π2me−
− µ3

e

8π2
arcsinh(

µe

me−
)

ϵquarks =
3

8π2

∑
i=u,d,s

m3
i

[
xi(2x

2
i + 1)

√
1 + x2

i − arcsinh(xi)

]
.

The total energy density of the strange object is then
recovered using the volume fraction:

ϵtotal = fϵquarks + ϵe− .

5.7 Equation of State

Associated with each µB now is a pressure and energy
density. Plotting the ordered pairs (ϵ, P ) using the
parameter µB and finding a fit will allow for derivation
of an equation of state for the strange object:

Figure 6: P vs. ϵ for mixed-phase, strange quark stars
and nuggets. Exponential fit: P (ϵ) ≈ 0.00632ϵ1.142

The equation of state can now be used in solving the
TOV and mass equations for mixed-phase, strange
quark stars. This will allow for the finding of potential
masses and radii of the hypothetical object based on
the initial assumptions. Changing units to make the
numbers more physical (MeV 4 → MeV

fm3 ), trying dif-
ferent fits for the equation of state, and repeating the
process with different matter are all possible directions
to move in from here.

6 Conclusion

In this project, methods for finding solutions to the
TOV and mass equation system for a mixed-phase,

strange quark star were discussed. A relativistic
Fermi gas model aided in finding an equation of state
for the object of interest, and programs in C++ and
Python aided in procuring numerical solutions for all
of the problems encountered. The project yielded an
understanding of natural units and parametrization
of problems as well as a tour of the wonderful world
of extremely dense objects. Although most exotic ob-
jects cannot be characterized solely using a Fermi gas
model, predictions for their masses and radii may be
generated using a similar framework while employing
more complicated physics. These predictions can then
aid in the future detection and identification of these
objects in LIGO probes. The value of parameters
such as the Bag constant, the composition of the
hypothetical object, and the model used to construct
it may all be modified again and again to learn about
different animals in the zoo, so these exotic objects
may be identified and appreciated in the wild.
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