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Evidence for Dark Matter
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Our Hubble Volume Nearby Galaxies

Galaxy Clusters

Composite: NASA, Markevitch etal., Clowe et al.
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The QCD Axion: Motivation

• QCD is naturally CP violating from phenomena like QCD-instantons

• One naively expects a neutron electric dipole moment of 10-16 e cm

• But nEDM is measured to be below 3x10-26 e cm (Baker, 2006)

• The best explanation?  New U(1) axial symmetry, that when broken, 
cancels CP violation in the strong sector (Peccei, Quinn, 1977)

• Consequence: New particle, called the axion  (Weinberg, Wilczek, 
1978)

d = 10-16 e cm
    < 3x10-26 e cm
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Axions as Dark Matter

• Axions are produced athermally
• Misalignment Mechanism – Phase transition in the early 

universe leaves energy in the axion field which behaves as 
dark matter

• String/Defect Decay – Energy in topological defects 
radiates as cold axions

• In both cases axions are produced cold and in 
quantities sufficient to make up some or all of dark 
matter

• Perfect knowledge of QCD, cosmology, and inflation 
could, in principle, predict the axion mass that yields 
the amount of dark matter we have today
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Adapted from D. Marsh, “Axion Cosmology” arXiv:1510.07633
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Theoretical Preferences on Scale
• In general, things that happen before the end of inflation could 

produce dark matter with any axion mass, but after inflation favors 
1ueV and above

• Above 1 micro-eV, axions may have been produced after inflation

Adapted From: PDG Axion Review 2018
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The Axion Community is Growing

With advancements in cryogenics, 
magnet and quantum sensing 
coupled with better theoretical 
understanding of the cosmology of 
wave-like dark matter, the 
community has grown quickly. 

J. Ouellet
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Snowmass Community Whitepapers

The community road map, theory, 
cosmology, and experimental 
details are  presented in our two 
community white papers.

Axion Dark Matter 
arXiv:2203.14923
Editors: J. Jaeckel, G. Rybka, L. Winslow

New Horizons: 
Scalar and Vector Ultralight Dark 
Matter 
arXiv:2203.14915
Editors: M. Safronova and S. Singh
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Snowmass Cosmic Frontier Report – Main Message
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2211.09978
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Promising experimental 
techniques under development

Clean experimental signal
Well developed techniques
Ripe for incorporating 
quantum sensing 
techniques
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Axion Photon Bounds
GitHub - cajohare/AxionLimits: Data, plots and code for constraints on axions, axion-like 
particles, and dark photons

Note the significant 
astrophysical constraints on 
ALP parameters.

The yellow band is the QCD 
axion, white space is Axion-
Like Particle (ALP) space
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A few more example axion bounds
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Less coupling dependent bounds Axion-neutron bounds

GitHub - cajohare/AxionLimits: Data, plots and code for constraints on axions, axion-like 
particles, and dark photons
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Deeper Theoretical Preferences
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There is both model dependence and genuine disagreement in calculations about the axion mass that 
produces 100% dark matter density today – it is up to experimentalists do a comprehensive search
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Axion Photon Bounds, Zoomed In

• KSVZ and DFSZ are 
benchmark axion 
coupling models.  

• The class of 
experiments probing 
QCD axion 
parameters is the 
“Axion Haloscope”
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Axion Detector Length and Time Scales
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Maxwell’s Equations with an Axion Field
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The Axion-Photon coupling can be interpreted classically as a 
small perturbation to Maxwell’s equations:

∇ ⋅ 𝐸 = 𝜌 − 𝑔𝑎𝛾𝛾𝐵 ⋅ ∇𝑎

                                  ∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

 ∇ × 𝐵 =  
𝜕𝐸

𝜕𝑡
+ 𝐽 − 𝑔𝑎𝛾𝛾(E × ∇𝑎 − 𝐵

𝜕𝑎

𝜕𝑡
)

                                    ∇ ⋅ 𝐵 = 0

In particular, an axion field in a strong magnetic field 
radiates photons like a very weakly coupled antenna!
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Axion Haloscope for my Intro Physics Class
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Axion Haloscope for my Intro Physics Class
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Axion Dark 
Matter

Electromagnetic Cavity 
Resonance

Axion-Photon 
Coupling
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Principle of the Sikivie Axion HaloscopeThe	Axion	Haloscope

Digitize
Amplify	

P
o
w
e
r

Frequency

P
h
o
to
n

Virtual
Photon

B
-
Fi
e
ld

Unknown	axion	mass	
requires	a	tunable	resonator	

This	axion	lineshape
has	been	

exaggerated.	A	real	
signal	would	hide	

beneath	the	noise	in	
a	single	digitization.	
An	axion	detection	
requires	a	very	cold	
experiment	and	an	
ultra	low	noise	
receiver-chain.		
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C. Boutan

Rybka -REU Seminar- 2024

See P. Sikivie, PRL 51, 1415 (1983) for origin
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Axion Haloscope: How to search for Dark Matter Axions

Dark Matter Axions will convert to 
photons in a magnetic field.

The conversion rate is enhanced if 
the photon’s frequency corresponds 

to a cavity’s resonant frequency.

Signal Proportional to
Cavity Volume
Magnetic Field

Cavity Q

Noise Proportional to
Cavity Blackbody Radiation

Amplifier Noise

Sikivie PRL 51:1415 (1983)
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ADMX Collaboration

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-
SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52- 
07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User 
Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Pacific 
Northwest National Laboratory is a multi-program national laboratory operated for the U.S. DOE by Battelle Memorial Institute 
under Contract No. DE-AC05-76RL01830.Additional support was provided by the Heising-Simons Foundation, and NSF Grant 
PHY-2208847

Collaborating Institutions:

University of Washington
Washington University St. Louis
University of Western Australia
University of Florida
University of Sheffield
University of Western Australia
Stanford University / SLAC
UC Berkeley
Fermilab
Pacific Northwest National Laboratory
Lawrence Livermore National Laboratory
Los Alamos National Laboratory

ADMX Collaboration meeting Jan 2023
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ADMX Design
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Tuning ADMX
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Example Cavity Tuning Curve Tuning Rods within Cavity

We are only sensitive to axions 
within ~10 kHz of the cavity’s 
fundamental mode.

We tune this frequency 
mechanically by moving rods 
within the cylinder.

Lowest mode couples well to DM axions
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The Importance of Noise

Signal Power

Noise Power

We need our noise to be much smaller than our signal to make a detection.

The noise is a thermal, and the slower we scan the smaller the uncertainty.

We must carefully calibrate the noise of our system – to understand our sensitivity, we must understand the 
temperatures of the components, the signal loss in the cables, and the performance of the amplifiers.
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ADMX Noise Calibration

Our primary noise calibration comes from a 
temperature sensor

M. Guzzetti, APS April 2023

Rybka -REU Seminar- 2024 25



ADMX Noise Calibration

Our first-stage amplifier is a narrow-band JPA 
(Josephson Parametric Amplifier).  It must be 
tuned to match the cavity.

JPA Added noise is calibrated by comparing powers 
and transmissions with the JPA powered and 
unpowered.  We have a few photons of extra noise 
beyond the standard quantum limit.

Rybka -REU Seminar- 2024 26

Warm testing of 
JPA electronics for 
ADMX Run1D



ADMX Operations

The cavity is tuned every 100 seconds, during which power spectra are 
taken.  Overlapping power spectra are examined for the characteristic 
axion signal shape appearing on-resonance.

The picture on the left shows how an axion signal would appear in the 
data.  This is a synthetic signal.
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Data Taking Cadence
14 “nibbles” = ∼ 10 MHz sweeps single scans: range: 50 kHz, resolution: 100Hz,  integration time: 100s 

Bartram et al. Phys. Rev. D 103, 032002 (2021)
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Blind-Injection Synthetic Signal Detection

The lineshape was 
consistent with 
cosmological predictions

The signal was 
clearly coming from 
inside the cavity

This signal sure looked like 
an axion.  But before we 
began ramping the magnet 
down to be sure, we wanted 
to try looking at it from 
another mode.
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Axions Couple to TM010 modes, not TM011

Overlap of axion field (black) 
and E&M mode field (red)

This signal appeared in both modes, 
and was thus clearly not an axion.

Rybka -REU Seminar- 2024 30



ADMX Recent Published Results

Bartram et al. PRL 127, 261803 (2021)

We are sensitive to DFSZ or near-DFSZ axions at nominal dark matter densities, and KSVZ axions at 
fractional dark matter densities.   

Excluded parameter space over the last 5 years
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ADMX High-Resolution Results
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M. Guzzetti

Nonvirialized “extra cold” dark matter 
produces a narrow signal with a 
measurable doppler shift

A high-resolution analysis to search for 
narrowband signals puts limits on dark 
matter axion flow densities

M. Guzzetti, General Exam
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ADMX Upcoming Results

preliminary
preliminary
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Exploring new parameter space: Preliminary sensitivity in the 1.3 GHz range

33
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Further 
Plans

ADMX EFR

New Site

New Magnet

New Design

ADMX EFR
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ADMX-EFR
• Incorporate technologies as they mature for a continuous scan 

sensitive to DFSZ axions at 2GHz and up 
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Electronics 
dil. fridge Resonator 

dil. fridge
Resonator 

array

Low noise 
amplifiers

25mK
0.01 Gauss

100mK
9.4T

Site: Fermilab
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The Future of Haloscopes

• Sophisticated, high-Q Resonators
read out by

• Sub-quantum limit detectors
inside of

• Large, high-field magnets
located at

• Dedicated Facilities
operated by

• Larger Collaborations
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A thorough search up to 10 GHz+ will require

At higher frequencies, axion haloscopes 
suffer from unfavorable

-Volume scaling
-Resonator Q scaling
-Standard Quartum Limit noise scaling
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Sophisticated Resonators – Multicavity 
Systems
• Multiple haloscope cavities, 

combined in a phase-aware way 
scale SNR by number of cavities

Rybka -REU Seminar- 2024

ADMX EFR 4GHz 
Multicavity 
design

ADMX 2GHz
 4-Cavity array
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Sophisticated Resonators – Multiwavelength 
Cavities
• Dividing single cavities or metamaterial structures 

captures similar volume gains to multiple cavities
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“Pizza” Cavity is divided into 
subregions and read out coherently.
S. Youn, CAPP (2023)

Multiple periodic conductors allow the ALPHA “Plasma 
Haloscope” to have a multiwavelength volume 
A. Millar Phys. Rev. D. 107 055103 (2023)
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Sophisticated Resonators –Multiwavelength 
Dielectric Cavities
• Dielectrics can also be used to make multiwavelength cavities

Rybka -REU Seminar- 2024

MADMAX Design
E. Garutti, Patras 2023

ADMX-Orpheus Design
R. Cervantes, Phys. Rev. D 
106, 102002 (2022)

ADMX-VERA wedge-
cavity design
T. Dyson, Patras 2023
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Example: ADMX-Orpheus
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multiwavelength

tunable

New limits on hidden photons: 
Cervantes et al. Phys. Rev. Lett. 129, 201301 (2022)
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Sophisticated Resonators – High-Q Resonators
• One thought a pipe dream, groups are developing the capability to 

run superconducting magnets in multi-Tesla fields
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CAPP reports a Q of 
107 with high-Tc 
Superconductor
-D. Ahn, Patras 2023

SQMS at Fermilab 
reports a Q of 106 with 
NbSn
-R. Cervantes, Patras 
2023

Test NbSn tuning rod (from 
SQMS) being installed in ADMX 
“sidecar” system
-T. Braine 2023
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Example: ADMX-Sidecar
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UW Grad student installs a superconducting tuning rod in ADMX-Sidecar.  Expected 
improvement in scan speed – 20%.   Testing underway.
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Sophisticated Resonators – Nonresonant 
Systems
• Nonresonant systems sacrifice 

sensitivity for broad frequency 
coverage

Rybka -REU Seminar- 2024

BREAD detector design
S. Knirck, Patras 2023Horns et al. JCAP04(2013)
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Detectors - Squeezing

• The standard quantum noise limit 
scales with frequency (~30 
mK/GHz), so higher frequency axion 
searches will be adversely impacted

• Squeezing sacrifices phase 
information for lower amplifier 
noise, translating to higher scan 
speeds

Rybka -REU Seminar- 2024

Squeezed noise setup used in 
HAYSTAC experiment
Jewell et al. 2301.09721 (2023)

See also CEASEFIRE – Wurtz et al. PRX 2,040350 (2021)
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Detectors – Photon Counting

• Single photon counting with a 
‘microwave phototube’ will 
push noise below the 
standard quantum limit – 
coupling to cavities is a 
challenge.

Rybka -REU Seminar- 2024

Qubit Based photon counting for sensitivity below the 
standard quantum limit (A. Dixit, PRL 126, 141302 (2021) )

Rydberg atoms can be used as microwave photon 
counters (R. Maruyama – Aspen 2022)
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Haloscope Magnet Development

Axion sensitivity scales as magnet stored energy.

Magnets are large, expensive, and critical for 
most axion search techniques.  They are also 
potentially usable at different frequency ranges 
with very different detector styles.

A user facility with large stored energy magnets 
would be of use to the wavelike dark matter 
community.

Many techniques share engineering 
requirements in cryogenics and quantum 
sensing.  Shared engineering resources would 
make for a more efficient axion program.

Existing DFSZ-sensitive 
experiments
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Consequences of Discovery

• Mass probes physics during 
or just after inflation

• Model predicts new Higgs 
sector or heavy quarks – 
possible accelerator 
signatures

• Lineshape probes local dark 
matter astrophysics

• Points the way to 
electron/nucleon coupling 
experiments – is it really the 
QCD axion?

Rybka -REU Seminar- 2024
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Aside – Gravitational waves with ADMX – a 
work in progress
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Gravity wave conversion 
in axion haloscope cavity 
and projected sensitivities 

Berlin et al. Phys. Rev. D 
105, 116011 (2022)

Simulated black 
hole inspiral 
signal in ADMX

Work by UW 
undergraduates 
Shaun Lee, Henry 
Su, and grad 
David Liu 
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Summary

Rybka -REU Seminar- 2024

• In the past few years, QCD Axion Dark Matter experiments have 
transitioned from an “instrument development” phase to a 
“discovery phase”.

• ADMX is operating with the hope of a discovery over an increasingly 
wider frequency range.  ADMX-EFR is in preparation to reach even 
higher.

• Emerging technologies have great potential to improve axion 
haloscopes

• We are scaling up axion experiments to make the discovery a reality.
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Back-up slides follow
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ADMX-EFR: More Cavities

18 cavity
array

scan speed ∝ 𝐶2 𝑉2𝐺

Simulations:

𝑄0 ∼ 60,000 (predicted, cryogenic)

First Prototypes:

𝑉 ∼ 250 ℓ 

mode crossings 
(orthogonal between cavities)
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Other interesting thinking about axions
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Axions may for clumps or ‘minihalos’ at 
solar-system or smaller scales (1).  This 
makes direct detection more 
challenging, but may allow parametric 
conversion, greatly enhancing signal 
(2,3)

1) Hogan and Rees, Phys. Lett. B 50 (1994) 769
2) M. Hertzberg and E. D. Schiappacasse JCAP11(2018)004 
3) G. Rybka, K. Ruffin, in preparation



EFR Initial Target

• Continuous coverage at DFSZ up to 4 GHz to start
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Beyond ADMX-EFR
We have visions of a larger multipurpose axion facility at FNAL – We may reach out to 
potential collaborators or users if the idea gains traction.
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Other Operating Haloscopes

• DFSZ searches from 
ADMX and CAPP

• KSVZ or near-KSVZ 
searches from 
HAYSTAC and TASEH

• Plus a host of small 
scale operating 
prototypes and 
planned haloscope 
experiments!
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