Neutrino Oscillations in Dense Media

Ellen Gates –Department of Physics and Astronomy, University of Missouri Advisor: Vincenzo Cirigliano –Institute for Nuclear Theory, University of Washington

Outline

i. Introduction

ii. Quantum Kinetic Equations

iii. Results

iv. Future Work

Outline

i. Introduction

ii. Quantum Kinetic Equations

iii. Results

iv. Future Work

Neutrinos

- Neutral leptons
- Weakly interacting
- Three flavors

Standard Model of Elementary Particles

Importance

- Most abundant particle in the universe
- Present in many astronomical settings
 - Early Universe/nucleosynthesis
 - Stars
 - Supernova Explosions
 - Black holes and neutron stars

Neutrino Oscillations

- Massless? no
- Flavors composed of mass eigenstates
- If they have different masses, they can change flavor

or
$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

 $\alpha = e, \mu, \tau$
 $i = 1, 2, 3$
^{g.} $\begin{pmatrix}
\nu_{e} \\
\nu_{\mu}
\end{pmatrix} = \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix} \begin{pmatrix}
\nu_{1} \\
\nu_{2}
\end{pmatrix}$
 $|\nu_{i}(t)\rangle \approx e^{-m_{i}^{2}t/2E_{i}} |\nu_{i}\rangle$

e.

Neutrinos in Dense Media

- Cannot neglect neutrino interactions in astrophysical setting too dense
- Want to know the nature of oscillation over time

Two Approaches

Quantum Many Body Approach

VS.

Quantum Kinetic Equations

Outline

i. Introduction

ii. Quantum Kinetic Equations

iii. Results

iv. Future Work

Simplifications

- Two flavor model
- No antineutrinos

Toy Model

- Supernova Environment
- 35 available momentum bins discretized
- 10 neutrinos: 6 v_e , 4 v_μ

$$\bar{p} = (p_x, p_y, p_z)$$

$$p_x = \frac{2\pi}{L} n_x \qquad n_{max} = 5$$

$$p_y = \frac{2\pi}{L} n_y \qquad x > 0$$

$$p_z = 0$$

Quantum Kinetic Equations (QKEs)

QKEs

$$f(t) = \begin{pmatrix} f_{ee}(t) & f_{e\mu}(t) \\ f_{\mu e}(t) & f_{\mu\mu}(t) \end{pmatrix} = \begin{pmatrix} f_1(t) & f_3(t) + if_4(t) \\ f_3(t) - if_4(t) & f_2(t) \end{pmatrix}$$

Vacuum Mass Term

$$R = \begin{pmatrix} -\cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix}$$

$$\dot{f}_{n_p}(t) = -i\left[\frac{\Delta m}{4|\bar{p}_n|}R, f_{n_p}(t)\right]$$

$$f_{n_p}(t) = \begin{pmatrix} 1 - \sin^2(2\theta) \sin^2(\frac{\Delta m^2}{4|\bar{p}|}t) & - \\ - & \sin^2(2\theta) \sin^2(\frac{\Delta m^2}{4|\bar{p}|}t) \end{pmatrix}$$

Collision Term

$$\begin{split} \mathcal{C}(\vec{n}_p) &= \left(\frac{G_F}{V}\right)^2 V^{1/3} \sum_{\vec{n}_2} \sum_{\vec{n}_3} \sum_{\vec{n}_4} \, \delta_{\vec{n}_p + \vec{n}_2, \vec{n}_3 + \vec{n}_4} \left(1 - \hat{n}_p \cdot \hat{n}_2\right) (1 - \hat{n}_3 \cdot \hat{n}_4) \\ &\times \frac{|\vec{n}_p| + |\vec{n}_2| - |\vec{n}_3|}{\sqrt{(|\vec{n}_p| + |\vec{n}_2| - |\vec{n}_3|)^2 - n_{4x}^2 - n_{4y}^2}} \, \theta((|\vec{n}_p| + |\vec{n}_2| - |\vec{n}_3|)^2 - n_{4x}^2 - n_{4y}^2) \\ &\times \left(\bar{\delta}_{n_{4z}, \sqrt{(|\vec{n}_p| + |\vec{n}_2| - |\vec{n}_3|)^2 - n_{4x}^2 - n_{4y}^2}} - \bar{\delta}_{n_{4z}, -\sqrt{(|\vec{n}_p| + |\vec{n}_2| - |\vec{n}_3|)^2 - n_{4x}^2 - n_{4y}^2}} \right) \\ &\times \left\{ \left[f_4(I - f_2) + \operatorname{Tr}\left(f_4(I - f_2)\right) \right] \, f_3(I - f_p) \, + \, (I - f_p) f_3 \, \left[(I - f_2) f_4 + \operatorname{Tr}\left((I - f_2) f_4 \right) \right] \right. \\ &\left. - \left[(I - f_4) f_2 + \operatorname{Tr}\left((I - f_4) f_2\right) \right] \, (I - f_3) f_p - \, f_p(I - f_3) \, \left[f_2(I - f_4) \, + \, \operatorname{Tr}\left(f_2(I - f_4)\right) \right] \right\} \end{split}$$

Outline

i. Introduction

ii. Quantum Kinetic Equations

iii. Results

iv. Future Work

Results: No Coherent Evolution

 $f_{n_p}(t) = \begin{pmatrix} 1 - \sin^2(2\theta) \sin^2(\frac{\Delta m^2}{4|\bar{p}|}t) & - \\ - & \sin^2(2\theta) \sin^2(\frac{\Delta m^2}{4|\bar{p}|}t) \end{pmatrix}$

Results: Coherent Evolution

Comparison Between Solutions

Results: Coherent Evolution

Results: Flavor Evolution

Comparison: Flavor Evolution

- Many body
- With collisions

V. Cirigliano, S. Sen, Y. Yamauchi (2024)

Occupation Number vs. Energy

 $E = |\bar{p}|$

 $f_{ee} = \left(\right)$

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Outline

i. Introduction

ii. Quantum Kinetic Equations

iii. Results

iv. Future Work

Future Work

- Collision term
- Compare with quantum many body approach

Thank you!

Special thanks to my advisor, Vincenzo Cirigliano; the REU organizers, Gray Rybka and Arthur Barnard; and my amazing REU cohort!

