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Neutrinos are the second most abundant particle in the universe. They play an important role
in many astrophysical processes, including in supernova explosions. It is thought that neutrinos
play an important role in the formation of proto-neutron stars in the aftermath of a supernova, but
a complete explanation for their role in this process does not exist. We set up a toy model of a
supernova that explores the nature of neutrino oscillations in the aftermath of the explosion. Our
results begin to give insight into the effect of a neutrino-dense environment on neutrino oscillations,
showing a collective evolution of the flavor states.

I. INTRODUCTION

This project aims to study how neutrino oscillations
are affected in an extremely neutrino-dense medium, like
a supernova. We begin with a brief overview of neutri-
nos, neutrino oscillations, and supernovae, and then walk
through the quantum kinetic equations we employed to
describe neutrino flavor oscillations in a supernova en-
vironment. We also explain the preliminary results ob-
tained from solving the quantum kinetic equations.

A. Neutrino Oscillations

Neutrinos are extremely light, neutral fermions that
interact with other particles only via the weak force
and gravity. They come in three flavor varieties: |να⟩,
α = e, µ, τ . Neutrinos were long thought to be mass-
less, as the standard model predicts, but they have been
observed to change, or oscillate, flavor as they travel
through spacetime. That is, a neutrino of flavor α may
later be observed to be in flavor state β. This is only pos-
sible if neutrinos have at least a very small mass and the
different flavors have different masses. It has since been
shown that neutrinos have three possible mass eigen-
states: |νi⟩ , i = 1, 2, 3, and each flavor is composed of
a superposition of these mass eigenstates following the
relation |να⟩ =

∑
i U

∗
αi |νi⟩, where U∗

αi is the mixing an-
gle matrix.

Looking at the time-independent Schrodinger equation
for the mass eigenstates of the neutrino and, since neu-
trinos are extremely light, applying the relativistic ap-

proximation pi =
√
E2

i −m2
i ≈ Ei − m2

i

2Ei
, we obtain the

result

|νi(t)⟩ ≈ e−m2
i /2Ei |νi⟩

From this we get the probability of a neutrino oscillating
from flavor α to flavor β:

⟨νβ |να(t)⟩ ≈
∑
i

UβiU
∗
αie

−m2
i t/2Ei ̸= 0
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We can now see that there is a nonzero probability that
a neutrino will oscillate from flavor α to flavor β if it is
composed of distinct mass eigenstates.

We can continue on in our derivation to find the prob-
ability of oscillation, say from the electron state to the
muon state, and we obtain the result

Pνe→νµ
= sin2(2θ) sin2

(
∆m2

4|p̄|

)
(1)

which gives

Pνe→νe = 1− sin2(2θ) sin2
(
∆m2

4|p̄|

)
(2)

For a comprehensive derivation, see Ref. [1].

B. Supernovae

Although neutrinos are extremely weakly interacting,
they still play an important role in many astrophysi-
cal settings, including in core-collapsing supernovae (CC-
SNs). Neutrino heating is responsible for heating up the
stellar matter that causes the initial explosion. Then, be-
cause of the process of electron capture (p+e− → n+νe)
which happens in abundance during a CCSN, νe are pro-
duced in large quantities (something like 1058 are emitted
in the first few seconds of the explosion). The oscilla-
tions of these neutrinos are thought to govern both the
creation of the proto-neutron star and the abundance of
heavy metals created in the explosion [2].

Since a CCSN is such a neutrino-dense environment,
neutrinos, which usually interact very little with bary-
onic matter, begin to self-interact. We must account for
these self interactions in our models. No model thus far
has been able to accurately recreate a SN environment.
The work discussed in this paper begins to explore the in-
terface between two commonly used models (discussed in
Section II) in an attempt to create a model that bridges
the knowledge gap between our observations of CCSNs
and the role we believe neutrinos to play in this process.
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II. QUANTUM KINETIC EQUATIONS

There are multiple approaches to studying neutrino
oscillations in environments like SNs. One, the quan-
tum many body approach, is detailed in Ref. [3]. An-
other approach uses quantum kinetic equations (QKEs)
to describe neutrino oscillations. This approach is com-
putationally far simpler, but there is some question as to
whether it is as accurate at modeling oscillations as the
quantum many body approach. One goal of this project
was to compare our results with the results from a similar
system that used the quantum many-body approach in
order to determine the effectiveness of QKEs on a smaller
scale.

A. Toy Model

Before deriving the QKEs, we must set up a toy model
of a supernova environment. This model, in momentum
space, is based on the model utilized in Ref. [3] and uses
the following constraints:

p̄ = (px, py, pz)

px =
2π

L
nx

py =
2π

L
ny

pz = 0

nmax = 5

px > 0 (3)

This creates a 2-dimensional grid of 35 discrete mo-
mentum modes, as seen in Fig. 1. A neutrino can occupy
any of the 35 momentum bins, and, using natural units,
the energy of the neutrino can be described by E = |p̄|.

To further simplify our calculations, we will ignore an-
tineutrinos and tau neutrinos. Considering only electron
and muon neutrinos, we will place 6 νe and 4 νµ in 10 dis-
tinct momentum bins on the grid. The 6 νe were placed
in the following bins:

p1 = (1,−4), p6 = (3,−3), p9 = (2,−2),

p11 = (4,−2), p13 = (2,−1), p21 = (1, 1),

And the 4 νµ were placed in:

p26 = (2, 2), p27 = (3, 2), p29 = (1, 3),

p34 = (2, 4)

The system was then time evolved and we observed
the effects of forward scattering and inelastic collisions
on the neutrino oscillations.

FIG. 1. Pink dots represent the 35 allowed momentum modes
for the neutrinos, going out to pmax = 5 (blue line).

B. QKE Structure

The basic structure of a QKE that describes neutrino
oscillations is as follows:

iDF = [H,F ] + iC (4)

Here, [H,F ] represents the coherent evolution of the
vacuum mass and forward scattering. H is the Hamil-
tonian, which can be split into the vacuum mass and
forward scattering Hamiltonian: H = Hvacuum +Hνν .
F is the density matrix

F =

(
FLL FLR

FRL FRR

)
(5)

In this case, we will only consider left-handed neutrinos,
FLL, as the standard model predicts. Because of this
simplification, we can instead employ a density matrix in
the flavor basis:

fnp(t) =

(
fee(t) feµ(t)
fµe(t) fµµ(t)

)
(6)

Then, since feµ(t) = f∗
µe(t) we can convert the density

matrix to a polarization vector basis:

fnp
(t) =

(
f1(t) f3(t) + if4(t)

f3(t)− if4(t) f2(t)

)
(7)

Note that the diagonal terms of this matrix represent
the probability of being in the νe and νµ state, respec-
tively, and are what we are most interested in. Our re-
sults will be expressed in this basis.

Finally, iC is the inelastic collision term. Also, because
we are using a toy model with discrete momentum bins,
we must discretize the QKEs, giving us functions that
include the integers np and ni. Below, we will further
explore the form of each term in the QKEs.
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1. Vacuum Mass Term

The vacuum mass term accounts for neutrino vacuum
oscillations, without interaction from other neutrinos. It
also takes into account the energy difference between
mass eigenstates with the term ∆m2 = m2

2 − m2
1. The

discretized vacuum mass term takes the form

ḟnp
(t) = −i

[
∆m2

4|p̄n|
R, fnp

(t)

]
(8)

where R is the mixing angle matrix

R =

(
− cos(2θ) sin(2θ)
sin(2θ) cos(2θ)

)
(9)

The vacuum mass term by itself can be solved analyti-
cally and we obtain the same probabilities derived in the
quantum mechanical approach, shown in Eqs. 1 and 2.

2. Forward Scattering Term

Adding the forward scattering term allows for neutrino
self interactions. It takes the form

ḟnp
(t) = −i

√
2
GF

V

∑
i

κij

[
fnq

(t), fnp
(t)
]

(10)

GF is the Fermi constant and describes the in-
teraction via the weak force between neutrinos.∑

i κij

[
fnq

(t), fnp
(t)
]
accounts for the interaction of the

flavor states between neutrinos in different momentum
bins, leading to collective flavor evolution. κij = 1 −
cos θij where

cos θij =
p̄i · p̄j
|p̄i||p̄j |

and represents the angle between momentum bins pi and
pj . κij thus has a unique weight depending on the align-
ment of the momentum bins the neutrinos occupy.

3. Collision Term

The collision term takes the form

C(n⃗p) =

(
GF

V

)2

V 1/3
∑
n⃗2

∑
n⃗3

∑
n⃗4

δn⃗p+n⃗2,n⃗3+n⃗4
(1− n̂p · n̂2)(1− n̂3 · n̂4)

× |n⃗p|+ |n⃗2| − |n⃗3|√
(|n⃗p|+ |n⃗2| − |n⃗3|)2 − n2

4y − n2
4z

θ
(
(|n⃗p|+ |n⃗2| − |n⃗3|)2 − n2

4y − n2
4z

)

×

(
δ̄
n4x,

√
(|n⃗p|+|n⃗2|−|n⃗3|)2−n2

4y−n2
4z

− δ̄
n4x,−

√
(|n⃗p|+|n⃗2|−|n⃗3|)2−n2

4y−n2
4z

)

×

{[
f4(I − f2) + Tr(f4(I − f2))

]
f3(I − fp) + (I − fp)f3

[
(I − f2)f4 +Tr((I − f2)f4)

]
−
[
(I − f4)f2 +Tr((I − f4)f2)

]
(I − f3)fp − fp(I − f3)

[
f2(I − f4) + Tr(f2(I − f4))

]}

This term is responsible for allowing neutrinos to un-
dergo inelastic collisions and switch momentum bins.
Given a neutrino starting in momentum bin p that col-
lides with one in momentum bin p2, the two neutrinos
will end up in bins p3 and p4 following the constraint
E(p) +E(p2) = E(p3) +E(p4). In other words, the sum
of the energy of the starting bins must be equal to the
sum of the energy of the bins the neutrinos end up in to
conserve momentum and energy.

Work related to the collision term is ongoing and, for
the most part, will not be included in the ”Results” sec-

tion (Section III) of this paper.

C. A Note on Dimensional Analysis

In the interest of completeness, I will briefly walk
through the dimensional analysis of these equations. As
mentioned previously, we are using natural units, so we
set c = 1 and ℏ = 1. That gives us time t in units of E−1

and momentum p in units of E.
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Furthermore, we can set the energy

√
2
GF

V
= µ

Putting all energies in terms of µ, and plugging in p̄n =

2π
L

√
n2
ix + n2

iy we get

∆m2

4|p̄n|
→ ∆m2L/µ

8π
√

n2
ix + n2

iy

We will set the constant ∆m2L/µ
8π = 1 because we are most

interested in observing the regime where the energies µ
and ∆m2L are on a similar scale. This yields the final
form of the QKE:

ḟnp
(t) = −i

 1√
n2
ix + n2

iy

R, fnp
(t)

− i
∑
i

κij

[
fnq

(t), fnp
(t)
]
+ C(np) (11)

III. RESULTS

As explained in Section II, Subsection B, the results of
the QKEs come in the form of a density matrix. In my
results (see Fig. 2 for an example) the blue line represents
the function f1(t), or fee(t), or the probability of being
in the νe state. The orange line, then, represents f2(t),
fµµ(t), or the probability of being in the νµ state. That
is to say, the blue and orange lines represent the diagonal
terms of the density matrix. Thus, the sum of these two
probabilities is always one, as represented by the purple
line.

A. Simplest Case

The simplest case we can model considers only the vac-
uum mass term (Eq. 8). As discussed previously, solving
this QKE will yield the results from Eqs. 1 and 2, with
the frequency of oscillations depending on the energy of
the momentum bin the neutrino occupies.

FIG. 2. Oscillation probability of neutrinos in momentum
bins p1 and p21. Bin p1 has the higher energy. Here, the red
and green lines represent the off-diagonal terms and are not
utilized in our results.

B. Coherent Evolution

Adding in the vacuum mass term, the neutrinos can
interact with each other, thus affecting their oscillations.
As a comparison with only the vacuum mass terms, we
can look at the same two neutrinos in bins p1 and p21.

FIG. 3. Oscillation probabilities for neutrinos in momentum
bins p1 and p21 with the forward scattering term. Forward
scattering interactions affect the oscillation of the neutrinos.

As we can see in Fig. 3, the oscillations are no longer
perfectly sinusoidal. This is because the forward scat-
tering term takes into account neutrino interactions that
do not significantly change the particles’ momenta, but
do change the neutrinos’ oscillations. This also creates
collective oscillation among the neutrinos, where the dif-
ferent flavor states evolve together, as shown in Fig. 4,
due to entanglement between the states.

C. Conclusions

These results, while still far from comprehensive, are
promising. We can see that the QKEs are effective in ac-
counting for both vacuum oscillations and forward scat-
tering effects. The collision term, when added, will ac-
count for inelastic collisions between the neutrinos, al-
lowing them to change their momenta. When this term
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FIG. 4. graph of oscillation probabilities for all 10 neutrinos
(blue representing neutrinos that begin in the νe state and
orange representing those in the νµstate ), showing that states
that begin with the same probability (either 0 or 1) tend to
evolve together.

is added, we expect to see even more collective evolution
because of stronger interactions. Another effect we may
see is flavor depolarization, which happens when neutri-
nos interact with each other so much, their flavor states
become maximally entangled. The density matrix for a
single neutrino in this state would have diagonal terms
both equal to 1/2, meaning an observer is equally likely
to find the neutrino in either flavor state.

Adding the collision term will also allow us to better
compare our results to the quantum many body results
from Ref. [3].
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