Neutrino Many-Body Systems

Arielle Frommer, UW INT REU Advised by Vincenzo Cirigliano and Yukari Yamauchi

Outline

- I. Overview of neutrino astrophysics
- 2. Background on second quantization and neutrino many-body systems
- 3. My work this summer

Outline

- I. Overview of neutrino astrophysics
- 2. Background on second quantization and neutrino many-body systems
- 3. My work this summer

Physics is governed by the Standard Model

bosons

Physics is governed by the Standard Model

neutrinos

What are neutrinos?

- Tiny particles in the Standard Model
- Only interact via the weak force
- Incredibly abundant
- Come in 3 flavor varieties

Solar neutrinos

- Discrepancy between expected neutrinos based on solar flux and actual neutrino detections
- Instead, neutrinos can change flavor (physicists were only detecting v_e)

Neutrinos beyond the solar system

- Created in supernovae explosions
- Occur in stellar nucleosynthesis, neutron stars, and black holes
- Around right after the Big Bang

Neutrinos are everywhere! Studying them can help us learn more about different astrophysical phenomena and particle physics

We are interested in simulating systems of many neutrinos and observing how they time-evolve

Outline

- I. Overview of neutrino astrophysics
- 2. Background on second quantization and neutrino many-body systems
- 3. My work this summer

Occupation Number Basis

- Many-body systems can be written based on whether a singleparticle state is occupied
- States correspond to a given **momentum** and **flavor**
- Because fermions cannot occupy the same state, each "bin" will either be 0 (unoccupied) or 1 (occupied)

Occupation Number Basis

We would write this system like this:

$\psi = |1010\rangle$

Adding Flavor

Allowing for a 2-flavor system (e and μ), we now have 8 possible states that a neutrino could be in:

Adding Flavor $\psi = |11000000\rangle$ $e \mu$

Adding Flavor $p_1 \ p_2 \ p_3 \ p_4$ $\psi = |10100000\rangle$ $e \mu$

- a_i^{\dagger} creates a neutrino in state *i*
- a_i annihilates a neutrino in state i

$\psi = |1 \ 0 \ 1 \ 0 \rangle$

- a_i^{\dagger} creates a neutrino in state *i*
- a_i annihilates a neutrino in state i

$$a_2^{\dagger} |1 \ 0 \ 1 \ 0 \rangle = |1 \ 1 \ 1 \ 0 \rangle$$

- a_i^{\dagger} creates a neutrino in state *i*
- a_i annihilates a neutrino in state i

$a_1 | 1 1 1 0 \rangle = | 0 1 1 0 \rangle$

- a_i^{\dagger} creates a neutrino in state *i*
- a_i annihilates a neutrino in state i

The occupation number basis lets us use creation and annihilation operators more easily!

We also will go on to write the Hamiltonian (expression for the energy of the system) in terms of these operators

Outline

- I. Overview of neutrino astrophysics
- 2. Background on second quantization and neutrino many-body systems
- 3. My work this summer

What if we rule out flavor?

Flavor increases the number of possible states by 2^K , where K is the number of momentum modes

For example, with a system of 10 momentum states and 4 neutrinos:

$$\binom{10}{4} = 210$$
 states $\binom{20}{4} = 4845$ states

Eliminating flavor allows us to probe larger systems and identify how flavor makes neutrino many-body systems behave differently

Constructing the Hamiltonian Matrix

- Hamiltonian is written in terms of operators
- Think of it as a matrix with values telling the system how to get from one state to another

$$H = H_{kin} + H_{vv}$$

Hamiltonian for I Flavor

$$H_{kin} = \sum_{p} |p| a_{p}^{\dagger} a_{p}$$

$$H_{vv} = \frac{G_F}{\sqrt{2}} \sum_{p, p', q, q'} \delta(p + q - p' - q') \times a_{p'}^{\dagger} a_{q'}^{\dagger} a_p a_q \times g(p', p, q', q)$$

Constructing the Hamiltonian Matrix

- Example with 4 momentum modes, 2 neutrinos, 1 flavor:
 - There are 6 possible combinations of momenta:

•
$$p_1, p_2: \psi = |1100\rangle$$

- $p_1, p_3: \psi = | 1 0 1 0 \rangle$
- $p_1, p_4: \psi = | 1 0 0 1 \rangle$
- $p_2, p_3: \psi = |0110\rangle$
- $p_2, p_4: \psi = | 0 1 0 1 \rangle$
- $p_3, p_4: \psi = \mid 0 \ 0 \ 1 \ 1 \rangle$

Momentum is conserved; no interaction allowed

final state

 p_1, p_2 p_1, p_3 p_1, p_4 p_2, p_3 p_2, p_4 p_3, p_4

p_1 , p_2	$/\Delta$	0	0	0	0	$0 \setminus$
p_1 , p_3	0	Δ	0	0	0	0
p_1 , p_4	0	0	Δ	0	0	0
p_2 , p_3	0	0	0	Δ	0	0
p_2 , p_4	0	0	0	0	Δ	0
p_3 , p_4	$\sqrt{0}$	0	0	0	0	Δ

initial state

We can use the information encoded in the Hamiltonian to time-evolve the system!

Flavorless Hamiltonian

Flavorful Hamiltonian

- Number operators represent the probability that a given **momentum bin** is occupied (ie. p_1)
- Different than the Hamiltonian probability amplitudes of a given many-body state (ie. | 1 1 0 0))

- Example with 4 momentum modes, 2 neutrinos, 1 flavor:
 - Each possible state has a probability amplitude that evolves with time:
 - $p_1, p_2: \psi = C_1 | \ 1 \ 1 \ 0 \ 0$
 - $p_1, p_3: \psi = C_2 \mid 1 \ 0 \ 1 \ 0
 angle$
 - $p_1, p_4: \psi = C_3 | \ 1 \ 0 \ 0 \ 1 \rangle$
 - $p_2, p_3: \psi = C_4 \mid 0 \ 1 \ 1 \ 0 \rangle$
 - p_2 , p_4 : $\psi = C_5 \mid 0 \ 1 \ 0 \ 1
 angle$
 - $p_3, p_4: \psi = C_6 \mid 0 \ 0 \ 1 \ 1 \rangle$

$$N_{1} = |C_{1}|^{2} + |C_{2}|^{2} + |C_{3}|^{2}$$

$$N_{2} = |C_{1}|^{2} + |C_{4}|^{2} + |C_{5}|^{2}$$

$$N_{3} = |C_{2}|^{2} + |C_{4}|^{2} + |C_{6}|^{2}$$

$$N_{4} = |C_{3}|^{2} + |C_{5}|^{2} + |C_{6}|^{2}$$

 $p_{1}, p_{2}: \psi = C_{1} | 1100 \rangle$ $p_{1}, p_{3}: \psi = C_{2} | 1010 \rangle$ $p_{1}, p_{4}: \psi = C_{3} | 1001 \rangle$ $p_{2}, p_{3}: \psi = C_{4} | 0110 \rangle$ $p_{2}, p_{4}: \psi = C_{5} | 0101 \rangle$ $p_{3}, p_{4}: \psi = C_{6} | 0011 \rangle$

$$p_1, p_2: \psi = C_1 | 1 1 0 0 \rangle$$

 $p_3, p_4: \psi = C_6 | 0 0 1 1 \rangle$

Graphing N_i

Graphing N_i with Flavor

What happens when states do not talk to each other?

10 momentum modes, 4 neutrinos, 1 flavor – neutrinos start in p_7 , p_8 , $\overline{p_9}$, p_{10}

What happens when states do not talk to each other?

Implement kinetic energy conservation ($\Delta \rightarrow 0$) to correct for this!

If kinetic energy is conserved, we expect all states to have the same kinetic energy...

...which means that they should all become equally likely.

Equilibration

$$\langle N \rangle = \sum_{i} w_i \langle \psi_i | N | \psi_i \rangle$$

We want to see whether the states equilibrate, or thermalize, without flavor as well as with flavor.

State Equilibration in 2 Flavors

35 momentum modes, 10 neutrinos, 2 flavors

Cirigliano & Sen & Yamauchi 2024

State Equilibration in I Flavor

No thermalization is happening!

Why is thermalization only happening in the flavorful case?

- Could it be that the number of possible states needs to be higher?
- Does flavor somehow create more stability or equilibrium in the system?

Look at the same system configuration in 1, 2, and 3 flavors to test

 $\overline{N_i} - \overline{N_{i,M.C.}}$

20 momentum modes, 6 neutrinos

2 flavor: e, e, e, μ, μ, μ

20 momentum modes, 6 neutrinos

3 flavor: $e, e, \mu, \mu, \tau, \tau$

 N_i

$$N_i - N_{i,M,C}$$

20 momentum modes, 6 neutrinos

Next Steps

- Investigate why flavor affects equilibration
 - May have to do with the energy level spacings can set whether a system equilibrates
- Continue probing larger systems!

Questions?

Thank you to Yukari and Vincenzo for your help and guidance on this project, and to the National Science Foundation and University of Washington REU for supporting my research!

