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ABSTRACT

Neutrinos are nearly massless particles in the Standard Model with the unique ability to oscillate mass, or
flavor. As they are produced in many different environments, such as in solar radiation, supernovae, and nu-
cleosynthesis, determining how they behave in many body systems is crucial to understanding astronomical
phenomena. We can set up systems of many neutrinos, initializing specific momentum and flavor configu-
rations and letting the system time-evolve. Building off of the work of Cirigliano et al. (2024), we use the
formalism of second quantization to construct a Hamiltonian, considering the kinetic energy terms and inter-
action potentials, and using creation and annihilation operators to describe flavor-changing oscillations. We
specifically compare the behavior of flavorful systems with flavorless systems. We examine the relationship
between the kinetic and potential energy terms in a one-flavor model with 10 momentum modes, analyzing how
different energy scales influence the system’s dynamics. We also find that flavorless systems do not equilibrate
or thermalize as expected. The behavior of neutrino many-body systems can illuminate how these particles
interact and time-evolve, and this work opens future avenues of research into the thermalization behavior of
one-flavor systems.

1. INTRODUCTION

Neutrinos are tiny, nearly massless Standard Model parti-
cles that only interact via the weak force. Neutrinos can oc-
cur in three flavors – electron, muon, and tau – corresponding
to the leptonic interaction that produces them. However, neu-
trinos created as a specific flavor may be observed at a later
time with a different flavor. This peculiar phenomenon is
known as flavor oscillation, and it occurs because neutrinos
exist as a superposition of energy-mass eigenstates whose
probability amplitudes oscillate with time. Depending on
the probability amplitudes of the different mass eigenstates, a
neutrino may be observed with a different mass and therefore
a different flavor.

Despite their weak interactions, neutrinos may be the key
to understanding crucial astrophysical phenomena. Neutri-
nos are produced in stellar nucleosynthesis, supernovae, and
black holes. They are also emitted by our own Sun, and
may have played a role in Big Bang nucleosynthesis. Un-
derstanding how many neutrinos interact and oscillate in a
given system may shed light on their evolution and provide
key insights into their role in astrophysics.

1.1. Formalism and Second Quantization

Neutrino many-body systems can be modelled and un-
derstood through formalism known as second quantization.
Specifically, we write our system of neutrinos in terms of an
occupation number basis – where each bin represents a given
momentum and flavor state that the neutrino could occupy.

Because neutrinos are fermions and cannot occupy the same
state, each occupation number will be either 0 or 1.

The occupation number basis enables us to use creation
and annihilation operators to create or destroy a neutrino in
a given-many body system. For example, in a system of 2
flavors and 4 momentum bins, the occupation number basis
is:

|e1,µ1,e2,µ2,e3,µ3,e4,µ4⟩

If we have an electron neutrino in p1 and a muon neutrino
in p3, the occupation number basis is:

|1,0,0,0,0,1,0,0⟩

If we want to change change the momentum of the first
neutrino to p2, and its flavor to a muon, we could do it this
way:

a†µ2ae2 |1,0,0,0,0,1,0,0⟩= |0,0,0,1,0,1,0,0 >

The Hamiltonian, or total energy of the system, can be ex-
pressed in terms of these creation and annihilation operators.

1.2. Constructing the Hamiltonian

In a many-body system of neutrinos, there are several dif-
ferent energies to consider as a part of the Hamiltonian. The
vacuum oscillation – the kinetic energy term – measures the
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energy of a single neutrino, and includes creation and annihi-
lation operators that change the neutrino flavor. The kinetic
energy term of Hamiltonian for a single-flavor system is as
follows:

Hkin =
∑

p

|p|a†pap

The interaction potential accounts for interaction energy
between two neutrinos:

Hυυ =
GF√

2

∑
p,p′,q,q′

δ(p+q− p′−q′)×a†p′a
†
q′a

†
pa†q×g(p′, p,q′,q)

1.3. Number Operators

Number operators express the behavior of different states
as time evolves. Each bin (ie. a muon neutrino with mo-
mentum p1, an electron neutrino with momentum p3) has
a number operator that represents the expectation value for
that bin, or the probability that we find a neutrino in that bin.
N+

i operators count the likelihood of finding an electron plus
the likelihood of finding a muon in a given momentum state:
N+

i = Ne
i + Nµ

i . Conversely, N−
i = Ne

i − Nµ
i .

2. MODELING

2.1. Two-Flavor Case

The toy model I worked with for the two-flavor case con-
tained 4 momentum modes and 2 neutrinos. In order to
constrain the momentum and reduce the complexity of the
Hamiltonian, we set up a momentum conservation relation:
p1 + p2 = p3 + p4. We set the initial state to be one electron
neutrino with momentum p1 and one electron neutrino with
momentum p2. We compared the number operators of the
initial occupied bins, or the probability amplitude of (p1,e)
and (p2,e).

Next, we considered the number operator N+
i and found

that N+
1 = N+

2 , N+
3 = N+

4 , and N+
1 + N+

2 = N+
3 + N+

4 . These re-
lations are consistent with the momentum conservation that
was set at the beginning of the model and with our under-
standing of number operators. The states are written as:
|e1,µ1,e2,µ2,e3,µ3,e4,µ4⟩ where the subscript indicates

the momentum. Here are the states that time evolve:

C1 |1,0,1,0,0,0,0,0⟩ (initial state)
C2 |1,0,0,1,0,0,0,0⟩
C3 |0,1,1,0,0,0,0,0⟩

Figure 1. Ne
1 and Ne

2 appear to oscillate together, which is consistent
with our momentum conservation relation that says two neutrinos
will either be have momenta p1 and p2 or p3 and p4. The slight
variation occurs because of the flavor oscillation.

C4 |0,1,0,1,0,0,0,0⟩
C5 |0,0,0,0,1,0,1,0⟩
C6 |0,0,0,0,1,0,0,1⟩
C7 |0,0,0,0,0,1,1,0⟩
C8 |0,0,0,0,0,1,0,1⟩

Given these amplitudes, the number operators should be
equal to:

N+
1 = Ne

1 + Nµ
1 = |C1|2 + |C2|2 + |C3|2 + |C3|2

N+
2 = Ne

2 + Nµ
2 = |C1|2 + |C3|2 + |C2|2 + |C4|2

N+
3 = Ne

3 + Nµ
3 = |C5|2 + |C6|2 + |C7|2 + |C8|2

N+
4 = Ne

4 + Nµ
4 = |C5|2 + |C7|2 + |C6|2 + |C8|2

These derived relationships are consistent with the graphi-
cal model.

Figure 2. While the oscillation amplitude varies throughout, the
number operators all sum to 1 as expected.

The time-evolution of these 8 states was also plotted.
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Figure 3. We plotted the amplitudes over time of the 8 states that
do time-evolve.

Figure 4. We reconstructed a plot from Cirigliano et al. 2024.

Then, we mainly explored the one-flavor case and exam-
ined momentum modes.

2.2. One-Flavor Case: 4 Momentum Modes

Moving onto the one flavor case, we first modeled the same
system of 4 momentum modes and 2 neutrinos with the same
momentum relation, but excluding flavor. We began in the
same initial state with two electrons of momentum p1 and
p2. Because we have taken out flavor, the amplitudes of each
state now oscillate between p1 and p2 and p3 and p4 without
variation. The states are written as: |e1,e2,e3,e4⟩.

Here are the states that time-evolve in this system:

C1 |1,1,0,0⟩ (initial state)
C2 |0,0,1,1⟩

When we look at the number operator relations, this uni-
formity also emerges. We no longer consider N+

i and N−
i in a

flavorless case, since Ni = Ne
i . The number operators are as

follows:

N1 = |C1|2 = N2
N3 = |C2|2 = N4

Figure 5. We plotted the amplitudes over time of the 2 states that
do time-evolve.

2.3. One-Flavor Case: 10 Momentum Modes

Next, we model a case with 10 momentum modes and 4
neutrinos. For both models, we began with the neutrinos in
p1, p2, p4, and p5. We tried 2 different momentum relations.
The states are written as: |e1,e2,e3,e4,e5,e6,e7,e8,e9,e10⟩.
For the first model, we set these momentum relations:

p1 + p2 = p3 + p4
p4 + p5 = p6 + p7
p7 + p8 = p9 + p10

Given the initial state, here are the states that time-evolve
in this model:

C1 |1,1,0,1,1,0,0,0,0,0⟩ (initial state)
C2 |1,1,0,0,0,1,1,0,0,0⟩
C3 |0,0,1,1,0,1,1,0,0,0⟩

Given these amplitudes, the relevant number operators are:
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Figure 6. We plotted the amplitudes over time of the 3 states that
do time-evolve.

N1 = |C1|2 + |C2|2 = N2
N3 = |C3|2 = N4
N1 = 1 − N3
N4 = |C1|2 + |C3|2 N6 = |C2|2 + |C3|2 = N7
N5 = |C1|2
N6 = 1 − N5

Note how N4 is not equal nor inverse to another number
operator, because it straddles two momentum relations.

Figure 7. We plotted the number operators of the states that time-
evolve.

These derived relationships are consistent with the graphi-
cal model.

We modeled a similar setup of 10 momentum modes and
4 neutrinos, but with different momentum relations. For this
model, we set the following momentum relations:

p1 + p2 = p3 + p4
p1 + p2 = p5 + p6
p3 + p5 = p7 + p8

Figure 8. We plotted the N4, which has a different amplitude than
the other number operators because it straddles 2 momentum rela-
tions.

p7 + p8 = p9 + p10

We initialized the model in an initial state of
|0,0,0,0,0,0,1,1,1,1⟩. Based on the momentum relations,
the system can evolve into the following states:

C1 |0,0,0,0,0,0,1,1,1,1⟩ (initial state, 209th state)
C2 |0,0,1,0,1,0,0,0,1,1⟩ (164th state)
C3 |0,0,1,0,1,0,1,1,0,0⟩ (159th state)

When we graph the Hamiltonian over 30,000 time steps,
we notice that the probability amplitude of the initial state
remains high, and the states do not "talk to each other" as
much, so to speak, as they did in the other model.

Figure 9. We plotted the Hamiltonian of the system and found that
it was most likely in its initial state.
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When we plotted the number operators, a similar pattern
emerges. The expectation values of N9 and N10 remain high-
est, as did those of N7 and N8, which make sense since the
two states that their respective bins are occupied both have
higher amplitudes (C1 and C3) than the remaining state (C2).

Figure 10. We plotted the number operators N3 and N5, N7 and N8,
and N9 and N10.

The reason that the states with higher energies do not mix
as much comes down to the values of the kinetic energy and
the potential energy in this system. In any given two-level
system, the Hamiltonian is given as:[
∆ ϵ

ϵ −∆

]
∆ is the kinetic energy difference in the system, and ϵ is
the g-factor value, which is related to the potential energy.
In the limit of ∆→∞, the following eigenvalues and eigen-
vectors emerge for a two-level system:

1√
2

([
1
0

]
+

[
0
1

])

We can see that the amplitudes of each state are the same,
so they will oscillate with equal and opposite probability.
If we look at the same setup in the limit of ϵ << ∆, then
different probabability amplitudes emerge:[

1
0

]
+

ϵ

2∆

[
0
1

]
√

1 +
ϵ2

4∆2

In our example, we found ∆ = 0.00601331 and ϵ =
−0.0019435 between states p3, p5, p7, and p8. The ratio
of potential to kinetic energy is thus quite small, making the
probability amplitude on the interaction states much less than
the amplitude on the initial state.

2.4. Equilibration

Finally, we can consider the system’s behavior when we
implement kinetic energy conservation, or ∆→ 0, thus cor-
recting for this effect. If kinetic energy is conserved, we
expect all states to have the same kinetic energy, which
means that they should all become equally likely. This rela-
tion is represented by the following equation, which defines
the number operators based on equally weighted probabili-
ties:

⟨N⟩=
∑

i

wi ⟨Ψi|N|Ψi⟩

When the number operators become equally likely, we say
that the system is equilibrating, or thermalizing, in a micro-
canonical ensemble. In Cirigliano et al. (2024), two-flavor
systems of many neutrinos were shown to equilibrate. How-
ever, in one-flavor systems, the neutrinos were found not to
equilibrate.

We tested a system with 6 neutrinos and 20 momen-
tum modes, comparing the equilibration when we inital-
ized the system with one flavor (e,e,e,e,e,e), two flavors
(e,e,e,µ,µ,µ) and three flavors (e,e,µ,µ,τ ,τ ). We observed
the evolution of each number operator. In addition, we calcu-
lated the equilibrated, equally weighted number operators in
the microcanonical ensemble and observed how the number
operators approach these values.

The system equilibrated fastest in the three-flavor case, as
all the number operators approached their microcanonical en-
semble values. The system equilibrated in the two-flavor case
as well, though not as frequently. Interestingly, the system
did not equilibrate at all in the one flavor case. Other config-
urations were attempted in the one-flavor case, though none
led to equilibration.

The reasons that the one-flavor system does not equilibrate
are not immediately clear. Equilibration may relate to the
energy level spacings of neutrinos, which could be different
across flavorless and flavorful systems. In future work, we
hope to investigate the lack of equilibration in a flavorless
system.
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Figure 11. The one-flavor system does not equilibrate as expected.
The left plot displays time-evolution of number operators, while the
right plot compares the number operators to their microcanonical
values.

Figure 12. The two-flavor system does equilibrate as expected.
The left plot displays time-evolution of number operators, while the
right plot compares the number operators to their microcanonical
values.

Figure 13. The three-flavor system equilibrates the quickest of all
the systems we modeled. The left plot displays time-evolution of
number operators, while the right plot compares the number opera-
tors to their microcanonical values.
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