
Fast Pulse Generation for Single-Photon Atom Interferometry

Shaan Dias
Carleton College Physics Department, Northfield, MN 55057

Emmett Hough, Tahiyat Rahman, Richard Kim, Subhadeep Gupta
University of Washington Physics Department, Seattle, WA 98195

(Dated: September 3, 2024)

Within the toolbox for atom optics and interferometry, single-photon processes enable faster
transitions between atomic states than two-photon processes, allowing for faster momentum transfer
and shorter overall atom interferometer sequences. Here we develop a system to generate fast pulses
of 556 nm (green) light on the 1S0 −3 P1 ytterbium transition, with high enough power to drive
complete transfers in 15 ns. These pulses will be used for single-photon atom interferometry with
ytterbium atoms with large momentum separation in a fast, compact configuration, suitable for
sensitive gravimetry and accelerometry.

I. INTRODUCTION

Atom interferometry is a powerful tool for making pre-
cision measurements for fundamental physics and inertial
sensing. Utilizing the fact that matter exhibits wave-
like properties, an atom interferometer (AI) sends atoms
along various paths through space-time before recombin-
ing them to produce an interference pattern. These in-
terference fringes enable us to make sensitive measure-
ments of atomic properties and external forces to the
benefit of a variety of fields including navigation, geo-
physics, metrology, and tests of fundamental physics [1].
For instance, current state-of-the-art inertial sensing can
measure accelerations at the 2 × 10−8 m/s2 level while
reaching stability of 5× 10−10 m/s2 in 105 s [2, 3].

To do this, we utilize a two-level quantum system and
use photons to coherently drive atoms between the two
states, while also imparting momentum to them. By us-
ing the concept of Rabi oscillations, we can carefully tune
the duration of the laser pulse to control the probabil-
ity of making such a transition. We call a π pulse one
which results in a complete transfer of population from
one state to another, and a π/2 pulse one which results
in superposition of the two populations with equal am-
plitudes [4]. As depicted in Figure 1 in the prototypical
AI configuration known as a Mach-Zehnder, a π/2 pulse
puts the atom in an even superposition of the two states
(analogous to a beam splitter), and a π pulse flips the
states (analogous to a mirror). Then the interferome-
ter is closed with another π/2 pulse and the resulting
interference pattern, created by the difference in phase
accumulated along each of the two paths, can be read
off.

The sensitivity of these measurements is proportional
to the space-time area enclosed by the arms of the inter-
ferometer. As such, physicists are interested in finding
ways to increase the space-time area that the interferom-
eter encloses. One class of methods is termed large mo-
mentum transfer (LMT) atom interferometry, in which
additional light pulses are used to impart higher mo-
menta on the interferometer arms, thus increasing the

FIG. 1: Mach-Zehnder interferometer geometry, driven
by a sequence of pulses π/2− π − π/2 for a total
interrogation time 2T . The interference pattern is read
off of either port, and its phase can be used to make
sensitive measurements of atomic properties and
external forces.

distance they travel. To understand why this helps, con-
sider measuring the acceleration due to gravity g. To
make a good measurement, we want to have a small
uncertainty compared with the value of g. For our
measurement, this means we need a small uncertainty
in the phase ϕ compared with the value of ϕ. For a
standard vertically oriented Mach-Zehnder interferome-
ter, the phase difference between the two paths goes as
nkgT 2, where n is the number of recoil momenta and T
is the time between π/2 and π pulses. The shot noise
uncertainty in phase goes as 1√

N
where N is the number

of atoms. Thus, increasing space-time area improves the
measurement since

δg

g
=

δϕ

ϕ
=

1√
NnkgT 2

. (1)

Our group has passed several milestones in previous
work using ultracold ytterbium (Yb) atoms, which is an
alkaline-earth-like metal. Our group demonstrated the
second ever Yb BEC in 2011 [6], and the first Yb inter-
ferometer in 2014 [7]. Following that work, we explored
a new method to measure the fine-structure constant by
using Bragg transitions to create a then-record 112 recoil
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FIG. 2: Figure from [5] depicting three-path atom interferometry space-time trajectory and atomic optics sequence
for (a) n = 16 and (b) n = 100 using two-photon processes. This method has successfully achieved LMT up to
n = 112.

LMT AI [5]. We also reported the first fountain AIs for
Yb [8]. Yb is advantageous for its multiple available iso-
topes (which allows for equivalence principle testing and
systematic cross-checks) and its narrow-linewidth transi-
tions that could be used for single-photon AI, making it
a good choice for this application.

In this report, I will first discuss the underlying physics
of atom interferometry as a whole, with a focus on how we
will implement single-photon LMT atom interferometry.
I will then report on the initial work I have accomplished
to generate the fast laser pulses required to achieve the
results we are interested in, and then discuss the future
work still required.

II. SINGLE-PHOTON LMT CLOCK AI

A. 2-Photon vs Single-Photon Processes

Currently the most common way of doing AI is to use
a 2-photon process. An example of which called a Bragg
transition is shown in Figure 3a where the ground state
and excited state are plotted in momentum space, so they
lie on the dispersion relation given by the kinetic energy
p2/2m plus the internal energy, where p is the momentum
of the atom cloud and m is the mass of Yb. In the 2-
photon process, using two lasers, the atom is driven from
the ground state up to some energy far detuned from the
excited state, and then back down to the ground state.
In this process, the atom gains two recoil momenta (2ℏk)
from the photons.

Additionally, LMT is possible with 2-photon processes,
in which to gain 2nℏk recoil momenta, you repeat this
transition n-many times as shown in Figure 3b. In our
lab, using this method we have demonstrated up to 112
n, using the interferometer geometry shown in Figure 2
[5]. By now, the Bragg transition process is well under-
stood for large momentum transfer, but it has certain
limitations.

For instance, there is a limit on how fast the π pulses
can be. If you consider the Fourier transform limit, if you

FIG. 3: Figure from [9] depicting 2-photon (a) first- and
(b) Nb-th-order Bragg transition diagram. The atomic
kinetic energy states of momenta Nℏk lie along the

parabola N2ℏωrec, where ωrecoil =
ℏk2

2m and
N = 0,±1,±2, .... Atoms are driven between these
states by two photons, gaining 2ℏk recoil momenta in
the first-order transition and 2Nbℏk recoil momenta in
the Nb-th-order transition.

have a very fast pulse in time, then you must have a large
spread in frequency. In the 2-photon process, all the rel-
evant ground states have very closely spaced energies, on

the order of ωrecoil =
ℏk2

2m . So if the frequency bandwidth
is greater than this energy spacing, the pulse will address
multiple possible transitions and send some of the atoms
to different states, causing you to lose coherent control
in the system. Using photons of wavelength 556nm with
Yb, we find ωrecoil = 2π×3.71 kHz sets the upper bound
for our frequency spread.

Additional LMT techniques exist such as Bloch Oscil-
lations, in which atoms are manipulated via two counter-
propagating lasers with a time-varying detuning. This
induces the atoms to Bloch oscillate about the periodic
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potential in the lattice frame, corresponding to an accel-
eration in the lab frame. Our group has extensively in-
vestigated this process, and for instance we have demon-
strated LMT delivery rate of ℏk per 11µs at efficiency
99.9% per ℏk with Yb [10]. However, this process has its
own set of challenges, such as the increased sensitivity to
noise in lattice intensity fluctuations [11, 12].

Single photon processes provide another method to
achieve LMT while allowing for faster π pulses than 2-
photon Bragg processes. The idea is to use a transition
in which the excited state has a long enough lifetime that
you can use it as one of your two states without worrying
about it undergoing spontaneous emission too quickly.
As depicted in Figure 4 we now drive on resonance, and
send the atom between the ground and excited state via
absorption and stimulated emission, which we can repeat
many times to achieve LMT. The energy spacing between
the relevant states here is much larger, so we do not have
to worry about addressing other transitions. This en-
ables us to use faster pulses despite their larger frequency
bandwidth. Using these faster pulses is especially benefi-
cial for compact configurations where you have a limited
amount of space for your experiment, so there is some
limit on how long the experiment can take given that
the atoms being addressed are in free fall. In addition,
the larger frequency bandwidth actually provides an ex-
tra benefit that the π pulses are more protected against
Doppler shifts, so the process works without requiring
the atoms to be as cold initially, and several identical
LMT pulses can be used sequentially.

FIG. 4: Single photon transition diagram. Atoms are
driven between the ground state and excited state via
absorption and stimulated emission. For each
transition, the atom gains a momentum ℏk from the
photon it absorbs or emits.

B. Realizing Single-Photon LMT Clock AI

The first realization of single-photon LMT clock AI
came from Jason Hogan’s group at Stanford, and their

setup is depicted in Figure 5 using strontium (Sr) atoms.
Note that the “clock transition,” for our sake, just means
that the excited state has a long enough lifetime. In their
interferometer, they start with a single π/2 pulse to split
their atoms into both states, and then fire a series of π
pulses to build up a larger momentum separation. The
first π pulse comes from the right, so all the atoms in the
ground state absorb a photon and they gain a momentum
ℏk to the left. All the atoms that were already in the
excited state undergo stimulated emission into the beam
traveling left, and thus gain a momentum ℏk to the right.
So for each π pulse in the sequence, the atoms gain 2ℏk
of momentum separation between the two arms. They
then use more π pulses to reverse the velocities of the
atoms before closing off the interferometer.

FIG. 5: Figure from [13] showing one example of a
spacetime diagram and pulse sequence they used to
achieve LMT single-photon AI with strontium.
Alternating π pulses come from the left and right to
drive atoms between the two states while imparting a
momentum separation of 2ℏk.

C. Applying with Ytterbium Atoms

We will now turn to our lab’s specific set-up and how
we aim to implement these ideas. We will utilize these
single-photon processes but using Yb atoms for the rea-
sons as discussed previously. Additionally, we will im-
plement a vertical orientation which will allow us to be
sensitive to gravity.
The two quantum states we will use are the 1S0 ground

state and the 3P1 excited state, which is the same inter-
combination line used in Sr by [13]. For Sr, this excited
state has a lifetime of around 20 microseconds, but Yb
has a narrower linewidth with a lifetime of just about
1 microsecond as shown in Figure 6. This means that
we need to do everything around 20 times faster than in
[13], which presents some technological challenges. To
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put some numbers to it, to achieve momentum separa-
tion of 100 ℏk requires 50 π pulses, so each π pulse would
need to be on the order of 10 ns. Tuning a π pulse de-
pends on both the duration and the intensity of the light,
so our goal in this project is to find a way to generate
pulses of 556 nm light that are on the order of 10 ns with
high enough power.

FIG. 6: Energy level diagram of the relevant 174Yb
states. We aim to perform LMT interferometry on the
1S0 −3 P1 transition to take advantage of its narrow
linewidth.

Also worth noting, the reason we do not use one of the
longer lifetime states in Figure 6 such as the 3P0 (which
would allow more time to do LMT), is that the longer
lifetime transitions are much more strongly forbidden.
Thus, they have much lower Rabi frequencies, so driv-
ing the longer lifetime transitions requires much longer π
pulses or more intense light. As a result, there is a trade-
off to be had, which is why the shorter lifetime state can
actually be preferred, especially for compact experiments
such as our own in which we want to be very fast.

D. Implementing an Acousto-Optic Modulator

The key device to generate these pulses is an acousto-
optic modulator (AOM), shown in Figure 7. To operate
it, you send an oscillating voltage signal to a transducer,
which converts the signal into a sound wave that travels
through a crystal. You then feed the light beam into the
crystal and it Bragg diffracts off the sound wave, and re-
sulting in various orders of diffracted beams coming out.
Another key function of an AOM is that each diffracted
beam’s frequency is shifted based on the acoustic fre-
quency. This can be understood from principles of con-
servation of energy and momentum by adding the phonon
and photon wave vectors such that the first order beam
gains the momentum of a single phonon, the second or-

der beam gains the momentum of two phonons, and so
on.

FIG. 7: Schematic diagram from [14] showing the
function of an AOM. A transducer converts an
oscillating voltage signal into a sound wave off of which
the input laser beam diffracts. Achieving high power
efficiency requires many nodes for the light to diffract
off of, as shown in both continuous wave mode and
pulsed mode.

In order to achieve good power efficiency into the
diffracted beam, we can consider what the cross-section
in continuous wave mode looks like, as in Figure 7. One
thing we might consider is to have our beam to cover as
many nodes as possible, such as by increasing the size
of the beam, since more nodes results in more efficient
Bragg diffraction. However, we will operate the AOM in
pulsed mode, sending pulses of sound in to get pulses of
diffracted light out. In this picture, if the beam is bigger
than the wave packet itself, then only a fraction of the
light is interacting with the sound wave at any time, so
a larger beam input will limit the power efficiency. So
there’s some balance to be found for the beam to be big
enough to interact with many nodes, without being much
bigger than the wave packet itself, in order to get optimal
power efficiency.
Additionally, the rise time of the pulse goes as tr ∼ D

V ,
whereD diameter of the input beam and V is the speed of
sound in the crystal. Essentially the rise time is the time
it takes for the sound wave to travel across the beam.
You cannot control the speed of sound, but this gives
another indication that we want to limit the size of the
beam.
Furthermore, the phase of the laser pulses generated is

an important variable, given that the phase of the pulses
contributes to the phase of the eventual interference pat-
tern. Thus, having the ability to know and control the
phase of each pulse is crucial in order to vary the phase
of the interferometer, measuring the resulting population
distributions to produce a fringe. So an important con-
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FIG. 8: Schematic diagram of experimental setup. 1112 nm infrared light is converted to 556 nm green light via a
second harmonic generation crystal, then isolated via a dichroic mirror. Green light is then focused down into the
AOM, and the first order diffracted beam is picked off. The RF signal originates from a voltage controlled oscillator,
and a switch is quickly turned on and off using a TTL signal to produce short RF wave packets which are amplified
and then sent to the AOM. These RF voltage packets are converted to sound wave packets off which the green light
diffracts, producing fast pulses in the first order diffracted beam.

sideration regarding the implementation of these pulses
is to have robust reproducibility and tunability in the
phase of each pulse.

III. GENERATING FAST PULSES

A. Experimental Setup

Here we will outline the basic experimental setup used
to implement all of this as depicted in Figure 8, and the
following sections will provide more detail on the itera-
tive process that led to these specific choices. On the op-
tics side, we start with an infrared laser (Koheras Boostik
BoY10PztS), and use a second harmonic generation crys-
tal to double the frequency and generate 556 nm green
light. We then use lenses to manipulate the size of the
beam and focus down to an AOM (Crystal Technology,
Inc model 3200-147), where the beam waist is roughly 30
microns. Then we take the first order diffracted beam
and send it to a fast photodiode (Thorlabs PDA10A2) in
order to read off the signal.

On the electronics side, we start with a voltage-
controlled oscillator (Mini-Circuits ZOS-200) which gen-
erates a continuous RF signal with a tunable frequency.

We send that signal through a switch (Mini-Circuits
ZASW-2-50DR), which can be turned on and off quickly
using an input TTL. For initial testing, we have built a
circuit that generates 2V peak TTL signals with a rise
time of less than 10 ns. This allows us to generate RF
wave packets coming out of the switch with a rise time of
10 ns, which is this switch’s limit and the current limit
on our overall setup. We then feed those RF packets into
an amplifier before sending them to the AOM, so that
the diffracted light pulses also have a rise time of 10 ns.

B. Optimizing Second Harmonic Generation
Crystal

The first step in setting up this system is to optimize
the second harmonic generation (SHG) crystal in order to
produce adequate green light to work with, on the order
of a few mW. In the SHG crystal, two input photons of
the same wavelength are combined in a nonlinear process
to produce a photon with half the wavelength, or twice
the frequency. The rate at which this process occurs is
dependent on the temperature of the crystal, so this is
one of the first parameters to tune.
However, we first need to align the input beam such

that there is an output signal to optimize. Our SHG
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works by feeding the input light through the crystal via
an optical fiber, so once the IR light is adequately cou-
pled into this fiber, the crystal produces and emits green
556 nm light. The light is coupled into the fiber via a
cylindrical lens, which is highly sensitive to the angle and
z-position. Thus, optimizing this coupling requires walk-
ing the lens along the z-direction in small increments,
and aligning the input beam at each step. Once the out-
put power is maximized, the input alignment should be
left alone as it is highly sensitive and easily falls out of
alignment when touched.

We are next able to optimize the temperature by re-
flecting the output light off a dichroic mirror, as shown
in Figure 8, to isolate the green light from the IR such
that we can measure just the green power. In Figure 9,
we see that the SHG crystal performs optimally around
42◦C, roughly following a sinc2 form.

FIG. 9: Plot showing output green light power from
SHG crystal as a function of crystal temperature, where
we see that the crystal performs optimally just below
42◦C.

Additionally, we expect that the power output should
scale quadratically with the power input. At higher input
powers, this relation will flatten out as the source of input
photons is depleted and the system effectively saturates.
This relation is confirmed in Figure 10.

C. Characterizing Electronics

Now that we have a source of green light, the next
step was to characterize the electronics we had, identify
the limitations, and upgrade as needed. Using mirrors
and lenses, we focused the green light down into the
AOM. On the electronics side, we had a Mini-Circuits
ZX80-DR230+ switch and a Thorlabs DET36A photodi-
ode. Then, using a Moku:Go from Liquid Instruments,
we could generate a TTL signal to turn on and off the
switch, and also to read the signal off of the photodiode.

By observing the signal coming out of the switch, we

FIG. 10: Plot showing output green light power from
SHG crystal as a function of IR power, where we
confirm that the crystal output power scales
quadratically with the input power, up to a point at
which the system saturates as the source of input
photons is depleted.

measured its rise time at around 1µs, matching the speci-
fications given on its data sheet. We identified this as the
main limiting factor, given that the photodiode rise time
was around 40 ns. To upgrade, we replaced the switch
with a Mini-Circuits ZASW-2-50DR switch. By looking
at the RF packet it outputs, we measured this switch
to have a rise time of 10 ns, agreeing with the provided
specifications. This should be sufficient to achieve our 10
ns pulse goal.
However, the photodiode still required some improve-

ment in order to accurately observe our pulses at these
time scales. To address this, we purchased a Thorlabs
PDA10A2 photodiode, which has a 2.3 ns rise time and
a fixed gain amplification.

D. Further Focusing Beam

In order to control the AOM rise time, we needed to
control the waist size of the beam at the AOM, given that
tr ∼ D

V . With Gaussian beams, focusing a beam with an
initial diameter D and wavelength λ through a lens with
a focal length f gives a waist

w0 ≈ 2λ

π

f

D
. (2)

In my initial setup, I had D = 2.34 mm and f = 150
mm, which theoretically should focus down to a waist of
22.7µm. In order to confirm this, I took a pinhole beam
profile. This method utilizes the fact that the radial ir-
radiance of a Gaussian beam goes as

I(r, z) = I0 exp
( −2r2

w(z)2

)
(3)
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where I0 is the peak irradiance at the center of the beam,
r is the radius, and w(z) is the beam radius in the z-
direction given by

w(z) = w0

√
1 +

( λz

πw2
0

)2

. (4)

Feeding the beam through a pinhole of known size at
various z-positions allows us to fit the power output to
this known curve and back out the beam waist w0. This
is shown in Figure 11, passing the beam through a 20 µm
pinhole, which allows us to determine the beam waist of
25.90± 0.58µm. This matches the theoretical prediction
of 22.7µm, and allows for a rise time at the AOM of
around 6 ns.

FIG. 11: Pinhole beam profiling of beam waist. By
measuring beam power out of known 20µm pinhole
placed at various z-positions, we extrapolate the beam
waist of 25.90± 0.58µm.

In order to explore the capabilities of the system and
achieve an even faster rise time, we attempted to focus
down even further. To achieve this, we allowed the input
beam to double in size to D = 5 mm, maintaining the
lens with f = 150 mm. This produced a 11.23µm beam
waist as shown in Figure 12, which would allow for a 2.5
ns rise time that would be more than sufficiently fast.

Note, however, that the 25.90µm beam has a Rayleigh
range of zR = 3.8 mm while the 11.23µm beam has a
Rayleigh range of just zr = 0.7 mm, where Rayleigh
range

zR =
πw2

0

λ
(5)

gives the distance from the focus in the z-direction at
which the beam area doubles.

Having a larger Rayleigh range has certain benefits.
Since the AOM has a finite width, the rise time really
depends on the average beam size across the AOM. Thus,
a beam with a small waist and short Rayleigh range
could have a larger average beam size over the AOM
than a beam with a larger waist but longer Rayleigh

FIG. 12: Pinhole beam profiling of beam waist after
focusing down further. Beam waist is now measured at
11.23± 0.46µm.

range. Moreover, by focusing down so aggressively to
achieve such a small beam waist, Bragg selection can
cause lowered diffraction efficiency because there is a
spread in the transverse component of k-vectors, mean-
ing that the Bragg condition cannot be satisfied across
the beam. We observed this effect in Figure 13, where
the dark stripe across the beam is the component that
meets the Bragg condition and diffracts. Also noticeable
in Figure 13 is that the 0th and 1st order beams exit-
ing the AOM overlap, again due to the short Rayleigh
range, making it challenging to cleanly isolate the 1st or-
der diffracted beam. For these reasons, we reverted back
to the 25.90µm beam, which will still be fast enough but
with better power efficiencies and beams that are easier
to spatially isolate.

FIG. 13: Input beam undergoing Bragg selection at
AOM. The 11.23µm beam waist is small to the point
that the transverse component of k-vectors of light
cannot all meet the Bragg condition. The result is that
only the dark stripe across the beam meets the Bragg
condition and diffracts, and the overall diffracted
efficiency is worse.
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(a) (b)

FIG. 14: Using an RF mixer, we view the RF wave packet amplitude (shown in yellow) (a) after the switch but
before the amplifier and (b) after the amplifier, each triggered by a 10 ns rise time TTL input to switch (shown in
blue).

(a) (b)

FIG. 15: Fast pulses in diffracted beam (green) following TTL signal at switch (blue). (a) Single fast pulse, inset
zooms in on the diffracted pulse to confirm rise time of 10 ns. (b) Series of fast pulses generated by a corresponding
series of TTL signals.

E. Producing Fast Pulses

At this point, the slowest component in the system
is the switch which has a rise time of 10 ns. Using a
homemade circuit developed by group member Richard
Kim, we can send the switch a TTL signal with a rise time
less than 10 ns, which should result in RF packet outputs
with a rise time of 10 ns, as limited by the switch. This is
confirmed in Figure 14 in which, by using an RF mixer,
we view the amplitude of the RF wave packet (rather
than the individual oscillations). In Figure 14a, we see
the RF packet after the switch in yellow, and the TTL
input to the switch in blue. Figure 14b shows the RF
packet after the amplifier in yellow. In both, we confirm
that the rise time is 10 ns as expected. However, it is also
worth noting that there is lots of variation in the shape
and height of these RF packets. This is likely due to
imperfections from the switch, and given that the switch

is also the limiting factor regarding pulse rise time, this
will be an important component to further improve in
the future.

We then send these amplified RF packets to the AOM
and get pulses of diffracted light out, as shown in Figure
15 where the TTL input to the switch is shown in blue
and the diffracted pulse out of the AOM is in green. In
Figure 15a, the inset zooms in on the green peak to show
the rise time of roughly 10 ns. Figure 15b shows that a
series of TTL signals will result in a series of diffracted
pulses as well.

Next, we coupled the diffracted beam into a test op-
tical fiber (Thorlabs PM-S405-XP). In the eventual im-
plementation, a similar fiber will be used to deliver the
light to the atoms, so we are interested in seeing how the
pulse profile changes after the fiber. The result is shown
in Figure 16 with the pulse before the fiber in green and
after the fiber in purple. In Figure 16a, we see an overall
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(a) (b)

FIG. 16: Laser pulses before (green) and after (purple) coupling to an optical fiber. (a) The power output after the
fiber is around 40%, as expected. (b) The normalized pulse profiles show a decrease in rise time after the fiber by
around 20%, since fiber coupling depends on both the input power and beam mode.

(a) (b)

FIG. 17: Power output in diffracted beam as a function of TTL pulse width (and thus sound packet width) and RF
frequency. (a) This AOM performs best at 140 MHz, suggesting that it has a center frequency of 140 MHz. For
shorter pulses, power output decreases as there are less nodes for the light to diffract off. (b) The power efficiencies
when normalized to the continuous wave output show higher efficiencies for higher frequencies, again explained by
having more nodes at short pulses.

power loss of around 40%. This is to be expected when
coupling light into an optical fiber, although in this lab
we have achieved efficiencies closer to 50% which we will
aim to replicated for the eventual implementation. In
Figure 16b, we have normalized the peaks before and af-
ter the fiber to a maximum of 1. Here we see that the
pulse after the fiber has a rise time around 8 ns, a de-
crease by about 25%. This may be explained by the fact
that the fiber coupling depends on both the power and
mode of light, so the input beam must achieve both high
enough power and a clean enough mode before the fiber
accepts it.

F. Measuring Power Efficiency

Now that we could generate fast pulses of light, the
next step was to consider how to optimize the power ef-
ficiency into the diffracted beam. To characterize this,
in Figure 17 we looked at power output as we varied the
TTL pulse length (and thus the size of the RF packet)
as well as the RF frequency.

In Figure 17a, we see that overall we get the most
power out when operating at 140 MHz. The likely ex-
planation is that this AOM has a center frequency of 140
MHz (despite being labeled as 200 MHz), so it produces
the best efficiencies at this frequency, and power output
drops off as the frequency deviates away. Additionally,
we see that for all frequencies, there is a drop off in power
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output for shorter pulses. This may be explained by the
fact that for a shorter pulse, there are less nodes for the
light to diffract off of, so it behaves more like multi-slit
diffraction than Bragg diffraction. As pulse length in-
creases, we effectively approach continuous wave mode
so the power efficiency flattens out.

In Figure 17b, we have taken all of the data and nor-
malized it with respect to the power output in continuous
wave mode. Here we see that higher frequencies produce
better normalized power efficiency. For higher frequen-
cies, there are more nodes at the shorter pulse widths, so
we might expect better efficiencies. This suggests that
using a higher center frequency AOM, such as 400 MHz,
may result in increased power output specifically at the
short pulse range that we are interested in.

However, when taking this data, we did not take steps
to ensure the RF power was the same for each RF fre-
quency. If the RF power was significantly different in
each trial, that could be another factor contributing to
the trends we observe. There is reason to believe this
could be the case since the AOM is listed as having a
center frequency of 200 MHz, contradicting our obser-
vation that it performs best at 140 MHz. Future work
should reproduce these measurements while controlling
for RF power to verify these results.

G. Calculating π Pulse Duration

By now we have a good understanding of the pulse
length and power that we can generate, so we want to
see how short of π pulses we can produce. To do this,
we model the pulses as in Figure 18a. For simplicity, we
assume there is some rise time in which the power linearly
increases to the maximum, then we can hold that power
for some time before turning the pulse off, and then it
linearly decreases to 0. Rabi frequency goes as the square
root of power, as shown in Figure 18b, and to generate a
π pulse we must tune the parameters such that the area
under the curve is equal to π.
Thus, the two main parameters that will dictate how

long of a π pulse we produce will be the maximum power
level of the pulse and the rise time. However, as we have
seen, power, pulse length, and rise time are all intrinsi-
cally dependent on each other, so it’s difficult to project
exactly what length π pulses we can achieve.
However, we can look at their effects in isolation. In

Figure 19a we have set the rise time at 8 ns, which cur-
rently seems within reach for our system. We see that to
get a 10 ns π pulse we would then need a max power of
about 150 mW at the atoms.

With our current setup and power efficiencies, we make
a conservative estimate that we can achieve a maximum
power of around 75 mW at the atoms by sending 300
mW of power to the AOM, getting a maximum power
of 50% in the first order beam, and then another 50% of
that into the optical fiber. Holding the power constant
at 75 mW, in Figure 19b we see that we would then need

a rise time of around 2.5 ns to get a 10 ns π pulse.

The conclusion is that we are currently close to this
goal, but not quite able to achieve it. However, once we
can improve our electronics and get more tunability over
the rise time and width of our pulses, we will be able to
run additional tests to hopefully find a configuration that
allows for 10 ns pi-pulses. But, at the very least, we see
that we can comfortably get 15 ns π pulses, which could
still potentially allow for up to 100 ℏk separation in our
interferometer.

Additionally, we can make a conservative approxima-
tion of the contrast we can achieve based on the proba-
bility of spontaneous emission given by P (t) = e−t/τ for
some time t and lifetime τ = 875 ns. Assuming a 50%
duty cycle, we approximate that for π pulses of duration
T , the atoms are then in the excited state for time T
before the next π pulse addresses them. Then the prob-
ability of spontaneous emission for N many π pulses is
given by (e−t/τ )N . Then with 15 ns pulses, for 100ℏk
separation (50 π pulses) we could achieve contrast up
to 0.42. If we can achieve 10 ns pulses, for the same
100ℏk separation we could improve our contrast up to
0.56. While these are likely underestimates, these con-
trast projections are still promising.

IV. FUTURE OUTLOOK

To recap, we have so far demonstrated that we can
generate 10 ns pulses, and we have established rise time
and power efficiency requirements to get π pulses of 10 ns.
While that is not quite possible at the moment, future
work will include developing electronics to produce faster
rise time, shorter pulses with more tunability to allow for
further testing and to potentially find a setting that can
achieve this goal.

As we have noted, the current limitation is set by the
switch, but there do not seem to be faster switches avail-
able for purchase. The solution we are currently working
on is to forego the switch entirely and to generate the RF
pulse directly. To do this, we will effectively build an ar-
bitrary waveform generator using a field-programmable
gate array (FPGA). Additionally, as previously noted,
controlling the phase of the pulses is important. While
the switch did not allow for control over the phase, by
writing the wave packet from scratch, the FPGA will al-
low us to reproducibly control and tune the phase of each
pulse.

At that point, we will be ready to implement this into
the actual machine to test with the atoms and confirm
how fast of π pulses we can achieve, as well as their effi-
ciencies. Then we will be ready to reproduce all of this
with a second AOM to provide a second pulse source,
which we can then use to perform LMT clock AI with
ytterbium atoms.
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(a) (b)

FIG. 18: Approximate beam pulse profile (a) and corresponding Rabi frequency (b) over time for a 50 ns pulse, 10
ns rise time, and 100 mW maximum power.

(a) (b)

FIG. 19: Pi pulse length calculations for various (a) maximum power and (b) rise time values.
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