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Abstract

1 Introduction

Nucleon form factors are integral to inelastic scattering experiments–they are measurable quantities that carry

important information about the internal structure of nucleons. In electromagnetic interactions, to first order in the

electromagnetic coupling constant, the transition amplitude for a point-like Dirac particle from a state ψi to a state

ψf in the presence of an electromagnetic field Aµ is [2]:

Tfi = −i
∫
d4x ψ̄fγ

µAµψi

So we can define the transition current for these particles to be:

jµp→p′ = ū(p′)γµu(p)ei(p
′−p)x

Assuming that ψi and ψf are momentum eigenstates with momenta p and p′ (here, γµ is a Dirac γ matrix, and u and

ū = u†γ0 are a Dirac bispinor and its adjoint). In general, though, there are two current-conserving independent four-

vectors one can construct out of gamma matrices, so a more general electromagnetic transition current appropriate

for a composite particle with mass M would be:

Jµ = Ū(P ′)

(
γµF1(Q

2) +
iσµνqν
2M

F2(Q
2)

)
U(P ) (1)

Where q = P ′−P is the four momentum transferred by the virtual photon exchanged between a scattering and target

particle, and Q2 = −q2 > 0 (here, σµν = i[γµ, γν ]/2). F1 and F2 are the Dirac and Pauli form factors respectively.

According to Bjorken [get citation], form factors are related to Fourier transforms of density functions describing

the internal structure of a composite particle. In the case of a Dirac particle, the Sachs electric and magnetic form

factors (GE and GM , resp.) are:

GE(Q
2) = F1(Q

2)− Q2

4M2
F2(Q

2)

GM (Q2) = F1(Q
2) + F2(Q

2) (2)
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Are related to Fourier transforms of the charge densities and magnetic dipole moment densities of the composite

particle [CITE]. In the nonrelativistic limit, this is exact—GE and GM are Fourier transforms of the electromagnetic

densities—but relativistic effects are non-negligible even at low energies and seriously challenge this view. It is more

accurate to say that they can be related to transverse charge and magnetic moment densities [MILLER PAPER].

Form factors for protons are well studied [CITATIONS], but the neutron is more elusive, as its net-zero charge makes

it difficult to ’hit’ in electromagnetic scattering experiments. More recently, better experimental measurements of

the electromagnetic form factors have been made [all 3 papers], and several models have been proposed that explain

the observations well. Two such models (both proposed in the ‘80s) are the Princeton bag model, in which nucleons

are collections of three quarks confined to a small region [] and the cloudy bag model, which adds effects from a

cloud of virtual pions surrounding the quark bag. The corrections from the pion cloud turn out to fit experiment

better for the proton, and a more recent calculation by Gerald Miller also calculated accurate form factors for the

neutron. In his paper, Miller used light-front perturbation theory to calculate the neutron form factors by including

effects from virtual π0 particles surrounding the neutron, where the interactions between the neutron and pion have

undetermined form factors built in to match experimental data.

The goal of this project is to explore a similar model, though instead of an n0 → n0π0 process, we have the other

allowed isospin-conserving process, n0 → p+π−. Additionally, in this perturbative calculation, we are assuming that

the proton and pion are point particles to second order in the coupling constant g, and are therefore ignoring the

contribution of their form factors to the neutron form factor.

2 The model

The interaction Lagrangian (adapted from wave equations given in Bjorken and Drell) for the proton, neutron, and

pion fields is:

Lint = gΨ̄iγ5(τ.ϕ)Ψ (3)

Where Ψ = (ψp, ψn)
T is the proton-neutron field, τ is the isospin operator, and ϕ = (ϕ±, ϕ0) in isometric-space

’spherical’ coordinates represents the π± and π0 fields. For the Neutron, we have the following terms:

Ln = gψ̄niγ
5ϕ0ψn +

√
2g

(
ψ̄piγ

5ϕ+ψn + ψ̄niγ
5ϕ−ψp

)
(4)

Since ϕ+ = ϕ∗−, this is Hermitian. If we take the neutron field to have no electromagnetic interaction to second order

in g, then the first term contributes nothing to the electromagnetic form factors and we just have the following two

diagrams:
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So we have the transition current:

Jµ = Ū ′γ52g
2

∫
d4k

(2π)4
i(/k + /q +M)

(k + q)2 −M2 + iϵ
γµ

i(/k +M)

k2 −M2 + iϵ

i

(P − k)2 −m2 + iϵ
γ5U

−Ū ′γ52g
2

∫
d4k

(2π)4
i

(k + q)2 −m2 + iϵ
(2kµ + qµ)

i

k2 −m2 + iϵ

i(/P − /k +M)

(P − k)2 −M2 + iϵ
γ5U (5)

Where U is the Dirac spinor for the neutron, M is the neutron and proton mass (which we’re taking to be the same),

and m is the pion mass.

3 Calculations

The most basic form of this calculation requires no renormalization, as the divergent terms cancel. We begin by

using the anticommutation of γ5 and γµ (γ5γ
µ = −γµγ5) to cancel the γ5 terms. Then we can let /P act on the

bispinor to the right in the second integral:

Jµ = Ū ′2ig2
∫

d4k

(2π)4
(/k + /q −M)γµ(/k −M)

((k + q)2 −M2 + iϵ)(k2 −M2 + iϵ)((P − k)2 −m2 + iϵ)
U

+Ū ′2ig2
∫

d4k

(2π)4
(2kµ + qµ)/k

((k + q)2 −m2 + iϵ)(k2 −m2 + iϵ)((P − k)2 −M2 + iϵ)
U (6)

Then we can combine the propagators using Feynman parameters and shift the origin of the momentum integral to

κµ = kµ − Pµ(1− x) + qµ(x− y):

Jµ = Ū ′4ig2
∫ 1

0

dx

∫ x

0

dy

∫
d4κ

(2π)4
(/κ+ /P (1− x) + /q(1− x+ y)−M)γµ(/κ+ /P (1− x)− /q(x− y)−M)

(κ2 −Q2y(x− y)− (1− x)m2 − x2M2 + iϵ)
3 U

+Ū ′4ig2
∫ 1

0

dx

∫ x

0

dy

∫
d4k

(2π)4
(2κµ + 2Pµ(1− x) + qµ(1− 2x+ 2y))(/κ+ /P (1− x)− /q(x− y))

(κ2 −Q2y(x− y)− xm2 − (1− x)2M2 + iϵ)
3 U (7)

These integrals added are not divergent, but it contains two divergent terms that cancel out, so we have to be careful

in the rest of this calculation. To deal with these divergent terms, we can use dimensional regularization: we integrate
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over 4− ϵ dimensions, then take ϵ to 0.

To procede, we drop all terms odd in κ, and use the following identities:

∫
d4−ϵκ κακβ f(κ2) =

∫
d4−ϵκ

κ2gαβ

4− ϵ
f(κ2) (8)

γαγµγα = −(2− ϵ)γµ

Ū ′(2Pµ + qµ)U = Ū ′(2Mγµ − iσµνqν)U

γµγα + γαγµ = 2gµα

γµγα =
1

2
(γµγα + γαγµ) +

1

2
(γµγα − γαγµ)

= gµα − iσµα

γαγµγβqαqβ = 2qµ/q − q2γµ

→ Q2γµ (9)

Some of the other identities are modified by taking the dimension to be 4 − ϵ, but they multiply convergent terms

in the integral and simplify to the above identities after we take ϵ to 0. We will also introduce a quantity with

dimensions of mass µ. The actual value is arbitrary but allows the integral to keep the right units.

This gives:

After dropping terms odd in κ and some Dirac algebra, we get:

Jµ = Ū ′4ig2
∫ 1

0

dx

∫ x
2

− x
2

dz

∫
d4−ϵκ

(2π)4
µϵ
γµ

(
− 2−ϵ

4 κ2 +M2x2 −Q2
(

x2

4 − z2
))

− iσµνqνMx2(
κ2 −Q2

(
x2

4 − z2
)
− (1− x)m2 − x2M2 + iϵ

)3 U

+Ū ′4ig2
∫ 1

0

dx

∫ x

0

dy

∫
d4−ϵk

(2π)4
µϵ
γµ

(
2

4−ϵκ
2 + 2M2(1− x)2

)
− iσµνqνM(1− x)2(

κ2 −Q2
(
x2

4 − z2
)
− xm2 − (1− x)2M2 + iϵ

)3U (10)

Where z = y − x/2, and terms odd in z have been integrated out. The final manipulation will be to Wick-rotate

κ0 → iλ0 so that we can integrate over Euclidean space. This takes κ2 → −λ2 and d4−ϵκ→ id4−ϵλ.

Jµ = Ū ′4g2
∫ 1

0

dx

∫ x
2

− x
2

dz

∫
d4−ϵλ

(2π)4
µϵ
γµ

(
2−ϵ
4−ϵλ

2 +M2x2 −Q2
(

x2

4 − z2
))

− iσµνqνMx2(
λ2 +Q2

(
x2

4 − z2
)
+ (1− x)m2 + x2M2

)3 U

+Ū ′4g2
∫ 1

0

dx

∫ x

0

dy

∫
d4−ϵλ

(2π)4
µϵ
γµ

(
− 2

4−ϵλ
2 + 2M2(1− x)2

)
− iσµνqνM(1− x)2(

λ2 +Q2
(
x2

4 − z2
)
+ xm2 + (1− x)2M2

)3 U (11)

Here an overall minus sign has been pulled out from the denominator, and this cancels the minus sign picked up

from the i in the numerator times the i from the Wick rotation. We now have expressions for F1 and F2, from the
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definition of the current:

Jµ(0) = Ū ′
(
γµF1(Q

2) +
iσµνqν
2M

F2(Q
2)

)
U (12)

We get:

F1(Q
2) = 4g2

∫ 1

0

dx

∫ x

0

dy

∫
d4−ϵλ

(2π)4
µϵ


2−ϵ
4−ϵλ

2 +M2x2 −Q2
(

x2

4 − z2
)

(λ2 +∆2)3
−

2
4−ϵλ

2 − 2M2(1− x)2

(λ2 +∆′2)3

 (13)

F2(Q
2) = −2M2 · 4g2

∫ 1

0

dx

∫ x

0

dy

∫
d4−ϵλ

(2π)4
µϵ

{
x2

(λ2 +∆2)3
+

(1− x)2

(λ2 +∆′2)3

}
(14)

Where ∆ and ∆′ are defined as:

∆2 = Q2

(
x2

4
− z2

)
+ (1− x)m2 + x2M2

≡ Q2

(
x2

4
− z2

)
+M2

∆′2 = Q2

(
x2

4
− z2

)
+ xm2 + (1− x)2M2

≡ Q2

(
x2

4
− z2

)
+M′2 (15)

All the convergent integrals take the following form (taking ϵ→ 0):

∫ ∞

0

d4λ

(2π)4
1

(λ2 +∆2
i )

3
=

2π2

(2π)4
1

4∆2
i

(16)

Using:

∫
d4−ϵλ

(4π)4−ϵ
µϵ λ2

(λ2 +∆2
i )

3
=

µϵ

(4π)2−ϵ/2

(
4− ϵ

2

)
Γ
(
3− 4−ϵ

2 − 1
)

Γ(3)

1

∆
2(3− 4−ϵ

2 −1)
i

ϵ≪1−−−→ 1

2

2π2

(2π)4

(
4− ϵ

2

)
1

2!

(
2

ϵ
− γE − ln

(
∆2

i

µ2

))
(17)

So the two divergent terms in F1 are:

∫
d4−ϵλ

(2π)4

(
2− ϵ

4− ϵ

λ2

(λ2 +∆2)3
− 2

4− ϵ

λ2

(λ2 +∆′2)3

)

=
1

2

2π2

(2π)4

(
4− ϵ

4

)(
2− ϵ

4− ϵ

(
2

ϵ
− γE − ln

(
∆2

µ2

))
− 2

4− ϵ

(
2

ϵ
− γE − ln

(
∆′2

µ2

)))
=

1

4

2π2

(2π)4

(
1− ϵ/2

ϵ
− 1

ϵ
− γE

(
2− ϵ

4
− 1

2

)
− 2− ϵ

4
ln

(
∆2

µ2

)
+

1

2
ln

(
∆′2

µ2

))
ϵ→0−−−→ 1

4

2π2

(2π)4

(
−1− ln

(
∆2

∆′2

))
(18)
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So we have:

F1(Q
2) =

2π2g2

(2π)4

∫ 1

0

dx

∫ x
2

− x
2

dz

M2x2 −Q2
(

x2

4 − z2
)

Q2
(
x2

4 − z2
)
+M2

+
2M2(1− x)2

Q2
(
x2

4 − z2
)
+M′2

− 1 + ln

Q2
(

x2

4 − z2
)
+M′2

Q2
(
x2

4 − z2
)
+M2


(19)

F2(Q
2) = −2M2 2π

2g2

(2π)4

∫ 1

0

dx

∫ x
2

− x
2

dz

{
x2

Q2
(
x2

4 − z2
)
+M2

+
(1− x)2

Q2
(
x2

4 − z2
)
+M′2

}
(20)

There are now three distinct integrals over z:

∫ x/2

−x/2

dz
1

M2
i +Q2

(
x2

4 − z2
) =

2

Q
√
M2

i +
Q2x2

4

tanh−1

 Qx

2
√
M2

i +
Q2x2

4

 (21)

∫ x/2

−x/2

dz
Q2z2

M2 +Q2
(
x2

4 − z2
) =

2

Q

√
M2 +

Q2x2

4
tanh−1

 Qx

2
√
M2 + Q2x2

4

− x

∫ x

−x

dz ln

M′2 +Q2
(

x2

4 − z2
)

M2 +Q2
(
x2

4 − z2
)
 =

4

Q

√
M′2 +

Q2x2

4
tanh−1

 Qx

2
√
M′2 + Q2x2

4

−
√
M2 +

Q2x2

4
tanh−1

 Qx

2
√
M′2 + Q2x2

4

+ x ln

(
M′2

M2

)

Note that the second term of the third integral partially cancels the first term of the second integral. This leaves us

with:

F1(Q
2) =

π2g2

(2π)4

∫ 1

0

dx

 2

Q

4M2(1− x)2 + 2m2x+ Q2x2

2√
M′2 + Q2x2

4

tanh−1

 Qx

2
√

M′2 + Q2x2

4


− 2

Q

m2(1− x)− Q2x2

2√
M2 + Q2x2

4

tanh−1

 Qx

2
√

M2 + Q2x2

4

+ x ln

(
M′2

M2

)
− 2x

 (22)

F2(Q
2) = −2M2 π

2g2

(2π)4

∫ 1

0

dx
2

Q

 x2√
M2 + Q2x2

4

tanh−1

 Qx

2
√

M2 + Q2x2

4

+
(1− x)2√
M′2 + Q2x2

4

tanh−1

 Qx

2
√
M′2 + Q2x2

4


(23)

3.1 Form factors at Q2 = 0

The values of F1 and F2 at Q2 = 0 are of interest. We can get these directly from equations (13) and (14). Setting

Q = 0 in both of these equations leaves the integrand independent of z, so integrating over z just gives a multiplicative

factor of x:

F1(0) = 4g2
∫ 1

0

dx

∫
d4−ϵλµϵ

(2π)4

x( (2−ϵ)λ2

4−ϵ +M2x2)

(λ2 +M2)3
−
x( 2λ

2

4−ϵ − 2M2(1− x)2)

(λ2 +M′2)3

 (24)
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F2(0) = −2M2 8π
2g2

(2π)4

∫ 1

0

dx

∫
dλ λ3

{
x3

(λ2 +M2)3
+

x(1− x)2

(λ2 +M′2)3

}
(25)

M′ is identical to M with x flipped with 1− x, and since x is integrated over, we can simply substitute x for 1− x

in the second term of each of these integrals and the fractions combine:

F1(0) = 4g2
∫ 1

0

dx

∫
d4−ϵλµϵ

(2π)4

(
x− 2

4−ϵ

)
λ2 +M2x2(2− x)

(λ2 +M2)3
(26)

F2(0) = −2M2 8π
2g2

(2π)4

∫ 1

0

dx

∫
dλ λ3

x2

(λ2 +M2)3
(27)

Now we can integrate over λ and use eq. (17) (ϵ has been taken to 0 after integration).

F1(0) =
2π2g2

(2π)4

∫ 1

0

dx

{
(2x− 1)

(
ln

(
µ2

M2

)
− γE

)
− x+

M2x2(2− x)

M2

}
(28)

F2(0) = −2M2 2π
2g2

(2π)4

∫ 1

0

dx
x2

M2
(29)

We have the following term in F1: ∫ 1

0

dx(2x− 1)× constants

This integrates to 0. A direct consequence of this is that the mass scale µ doesn’t affect the answer, as changing µ

only shifts the log by an x-independent amount. For simplicity, let µ = M . and we’re left with the following form

factors at 0:

F1(0) =
2π2g2

(2π)4

∫ 1

0

dx

{
(2x− 1) ln

(
M2

M2x2 +m2(1− x)

)
+

M2x2(2− x)

M2x2 +m2(1− x)
− x

}
=

2π2g2

(2π)4

∫ 1

0

dx

{
2M2x−m2

M2x2 +m2(1− x)
(x2 − x) +

M2x2(2− x)

M2x2 +m2(1− x)
− x

}
= −2π2g2

(2π)4

∫ 1

0

dx (x− x)

= 0 (30)

F2(0) = −2M2 2π
2g2

(2π)4

∫ 1

0

dx
x2

M2x2 +m2(1− x)
(31)

Where the natural log was integrated by parts. This means neutrons are uncharged (a perhaps unsurprising result).

F2(0) can be evaluated exactly in the chiral limit (m/M → 0):

F2(0) → −2
2π2g2

(2π)4
(32)
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And numerically for more the more realistic value of m/M = 1/7:

F2(0) ≈ −1.65
2π2g2

(2π)4
(33)

3.2 Conclusions

The F2(0) value can be used to determine our theory’s coupling constant α = g2/4π, as it is related to the exper-

imentally measured gyromagnetic ratio of the neutron. Precisely, it is the neutron’s g-factor: F2(0) = −3.826....[1]

Therefore:

α =
g2

4π
= −3.82

2π

−1.65
≈ 14.55

The strong coupling constant changes dramatically for low energies, but should be somewhere around 13.5, so this

is to be expected.
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