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In this paper, we implement a toy model of early universe (EU) neutrino flavor oscillations in
the 30 MeV → 1 MeV temperature regime with the goal of modeling the netrino flavor and energy
spectra in the moments before neutrino decoupling. The model utilizes an effective Hamiltonian with
e+e− and νν̄ thermal interactions and neutrino lepton number potentials, and tracks both coherent
flavor oscillations and decohering flavor-dependent inelastic collisions. We find that neutrinos and
antineutrinos both decouple as mass-aligned states and maintain a Fermi-Dirac energy distribution.
When the neutrino lepton potential is omitted, both neutrinos and antineutrinos born electron-
flavored decouple as non-electron flavored. The neutrino lepton number potential induces strong
differences between the end flavor spectrum of neutrinos and antineutrinos, and its inclusion in the
model causes either neutrinos or antineutrinos to “switch back” and decouple as electron-flavored.

I. INTRODUCTION

In the moments following the Big Bang, the rapidly
cooling and expanding early universe was composed of
matter and radiation in thermal equilibrium. Neutrinos
decoupled at ∼ 1 s , leaving behind a cosmic neutrino
background (CνB) analogous to the cosmic background
microwave radiation released after photon-decoupling.
These so-called “relic neutrinos” still exist today but,
with temperatures estimated to be on the order of ∼
10−4 − 10−6 eV, have not yet been directly observed [1].
Much is unknown about these neutrinos. This paper
aims to address the question of the energy spectrum and
flavor content of these neutrinos following their decou-
pling. This information has wide implications: Firstly,
the neutron-proton ratio at the time of Big Big Nu-
cleosynthesis (BBN) is dependent on the abundance of
electron-flavor neutrinos and antineutrinos. Secondly,
the impact of inelastic collisions on neutrino propagation
is relevant for cosmological neutrinos more generally; for
example, the neutrinos scattered during supernovae are
subject to significant inelastic collisions with the medium.

In the interest of being “self-contained”, this paper be-
gins with an introduction to neutrinos, neutrino oscilla-
tions, and early universe cosmology. We hope to provide
relevant background information while assuming as lit-
tle prior knowledge as possible. We then walk through a
description and derivation of the quantum kinetic equa-
tions (QKEs) used (section II). Detailed descriptions of
our findings are given in section III.
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A. Background: Neutrinos and Neutrino
Oscillations

Neutrinos are electrically neutral fermions that inter-
act with other particles through the weak interaction and
gravity. Although initially believed to be massless, neu-
trinos are now understood to have three definite-mass
eigenstates |νi⟩ , i = 1, 2, 3 [2]. These masses are not pre-
cisely known. Participation in the weak interaction pro-
duces neutrinos in one of three flavors, |να⟩ , α = e, µ, τ .
Curiously, a neutrino’s flavor may change as the neu-
trino propagates; a neutrino born as an α−neutrino may
later be observed as a β−neutrino. This phenomenon,
called “neutrino oscillation” has great historical signifi-
cance and has been taken as strong evidence that neutri-
nos have nonzero mass.
Neutrinos of definite flavor are related to neutrinos of

definite mass according to the relation |να⟩ =
∑

i U
∗
αi |νi⟩,

where U ∈ U(3) is the flavor-mixing matrix. The state-
ment that Uαi ̸= I (i.e., that definite-flavor neutrinos do
not coincide with definite-mass neutrinos) provides the
mechanism for neutrino oscillation. As a neutrino of a
definite-flavor |να⟩ propagates, the phases for each of the
constituent mass eigenstates evolve differently: the time-
dependent Schrödinger equation gives the evolution of
each mass eigenstate with respect to proper time τi:

i
∂

∂τi
|νi(τi)⟩ = mi |νi(τi)⟩

=⇒ |νi(τi)⟩ = e−imiτi |νi⟩

Neutrinos are extremely light, therefore we use the rela-
tivistic approximation and set pi =

√
E2

i −m2
i ≈ Ei −

m2
i /2Ei, where pi and Ei are momentum and energy in

lab frame. Now miτi = (Eit − piL) (where t ≈ L are
time and length in lab frame) may be approximated as
miτi ≈ m2

i t/2Ei. Therefore we have

|νi(t)⟩ ≈ e−m2
i t/2Ei |νi⟩
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Which gives

⟨νβ |να(t)⟩ =

∑
j

⟨νj |Uβj

[∑
i

U∗
αi |νi(t)⟩

]

≈
∑
i

UβiU
∗
αie

−m2
i t/2Ei ̸= 0

Thus the probability that a neutrino oscillates from flavor
α to flavor β is nonzero.

Neutrino propagation can be analyzed using the ef-
fective Hamiltonian formalism. The vacuum effective
Hamiltonian HV is determined by the flavor-mixing ma-
trix U and (in the flavor basis) has components:

[HV ]αβ = ⟨να|HV |νβ⟩ =
∑
i

∑
j

UαiU
∗
βj ⟨νi|HV |νj⟩

=
∑
i

UαiU
∗
βiEi

Let

U =

[
cos θV sin θV
− sin θV cos θV

]
for some flavor-mixing angle θV . Plugging this form for
U in directly into the expression for HV yields a rather
unwieldy form for HV . It can be made nicer by recogniz-
ing that adding any scalar multiple of the identity ma-
trix does not change the final probability amplitudes. By
making a clever choice C = −p+

(
m2

1 −m2
2

)
/4p (where

m1 is defined to be the heavier of the two masses) then,
skipping over the algebra (see [3] for a more comprehen-
sive derivation),

H ′
V = HV + CI =

∆m2

4E

[
− cos 2θV sin 2θV
sin 2θV cos 2θV

]
This is the form that is generally used for the “vacuum
effective Hamiltonian”, HV .

Deviations from the vacuum Hamiltonian lead to dif-
ferent energy eigenstates and therefore different oscilla-
tion probabilities. As an example, consider neutrinos in
the presence of matter. Matter generally consists of elec-
trons and nucleons which, through W− and Z−boson
exchanges, induce elastic forward scattering. In the
Mikheyev-Smirnov-Wolfenstein (MSW) effect, solar elec-
trons interact with electron-neutrinos via W -exchange,
which leads to matter potential VW =

√
2GFNe |νe⟩ ⟨νe|

(where GF is the Fermi coupling constant and Ne is
the electron density; see [4] for a derivation) [3, 5].
Z−exchange also induces neutrino scattering in the sun,
but because the scattering amplitudes are the same for all
three neutrino flavors, the corresponding matter poten-
tial VZ is a scalar multiple identity in the flavor basis and
therefore does not contribute to the overall probability of
flavor oscillation.

B. Background: Early Universe Cosmology

This subsection gives a (very!) brief description of
early universe (EU) cosmology, particularly the aspects
relevant to relic neutrinos. In this section, we assume
that our system is described by the “perfect fluid” stress-
energy tensor:

Tab = ρuaub + P (gab + uaub)

where ua is four-velocity, ρ is energy density, and P is
pressure. Indeed, if we assume the universe is isotropic
(no preferred spatial direction) and homogeneous on the
cosmic scale, then the “perfect fluid” form is actually the
most general possible form for Tab [6]. The dynamics of
our homogeneous and isotropic universe may be divided
broadly into three regimes (listed in temporal order; see
[1] for more details):

• “radiation dominated”: The “radiation domi-
nated” universe has its energy density dominated
by massless (or near massless) particles such as
photons and neutrinos. The equation of state for
massless thermal radiation has pressure given by
PR = ρR/3

• “matter dominated”: The “matter dominated”
or “dust-filled” universe has most of its mass-
energy coming from “ordinary matter” (i.e., non-
relativistic particles). The motion of matter is
small, therefore pressure PM is taken to be neg-
ligible.

• “vacuum dominated”: Under the Λ-CDM
model of cosmology, a cosmological constant Λ is
inserted into Einstein’s equation to accommodate
dark energy. This constant has the effect of “nega-
tive pressure”, therefore we take PΛ = −ρΛ

The assumptions of homogeneity and isotropy require
that the spatial geometry of the universe be a space
of constant curvature [6]. This is described by the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
where k = +1 describes an open universe, k = −1 de-
scribes a closed universe, and k = 0 describes a flat uni-
verse. Using the stress-energy tensor Tab and metric as
they are given above, it can be shown (see [7]) that Ein-
stein’s equation

Gab + Λgab = 8πTab

produces the following evolution equations for our cos-
mology:

ȧ2

a2
=

8πρ

3
− k

a2

ä

a
= −4π

3
(ρ+ 3P ) +

Λ

3
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Immediately it is clear that the scale factor a(t) cannot
be a constant. Indeed, with the cosmological constant
Λ, these equations give ȧ(t), ä(t) > 0, indicating that the
universe is expanding (and accelerating in its expansion!).
The constant ȧ/a ≡ H is known as Hubble’s constant. If
we assume that these expressions are true for the entire
history of the universe, then we can follow them back in
time and come to the conclusion that the universe was
once infinitesimally small. This is the basis for the “Big
Bang” model of cosmology.

The very first moments of the universe (i.e. before
the end of the inflationary period, ∼ 10−32 seconds af-
ter the universe was born) are largely unknown and up
to speculation. However, it is believed that the uni-
verse began as a hot and dense (T, ρ → ∞) “soup” of
radiation and matter in thermal equilibrium. As the
universe expanded and cooled, various particles “ther-
malized” in stages, decoupling from the rest of the pri-
mordial material. This thermalization occurs when the
particle’s interaction rate Γ becomes smaller than the
rate of change of the temperature; qualitatively, this
corresponds to when the mean free path of a particle
(∼ Γ−1) is larger than the particle horizon (∼ H−1 in
the radiation-dominated universe) [1, 6]. After thermal-
izing, the number of decoupled particles in a (comoving)
volume element remains constant, but the number den-
sity scales as a(t)−3 (consistent with “matter dominated”
regime). In the 1 MeV ≤ T ≤ 100 MeV temperature
range of the early universe, neutrinos are locked in ther-
mal equilibrium through the weak interactions

ν + ν̄ ↔ e+ + e− ,
(−)
ν + e± ↔

(−)
ν + e±

which have an average cross section of ⟨σv⟩ ∼ G2
FT

2

(where v ≈ 1 is the neutrino velocity). The number den-
sity of relativistic particles in this regime is n ∼ T 3 [1],
therefore the interaction rate for neutrinos is

Γ = n⟨σv⟩ ∼ G2
FT

5

Using H ∼ T 2/MP for Planck massMP , neutrino decou-
pling occurs when Γ ∼ H, or

Tν-decoupling ∼
(

1

MPG2
F

)1/3

≈ 1 MeV

II. DESCRIPTION OF QKES

The simplified QKEs used in this model have the fol-
lowing key features:

• We work in the temperature range T : 30 MeV →
1 MeV , where the only thermalized relativistic
particles (besides neutrinos and antineutrinos) are
photons, electrons, and positrons.

• We assume two neutrino flavors νe and νx and we
neglect spin degrees of freedom.

• We include a “thermal potential” which includes
e+e− and ν − ν̄ effects.

• We include neutrino lepton number effects and al-
low neutrinos and antineutrinos to have slightly dif-
ferent initial distributions. The latter effect is in-
corporated by introducing a small chemical poten-
tial µ in the Fermi-Dirac initial conditions.

• We include collision terms which account for pro-
cesses such as να +N ↔ ν′α +N ′. In the tempera-
ture range we are interested in, the target particles
N may be electrons or positrons. These interac-
tions may be flavor-dependent.

• We assume a non-degenerate bath of neutrinos and
target particles. This allows Pauli-blocking to be
neglected.

• We ignore charged lepton number (i.e. matter) ef-
fects

A. QKEs

Starting with the density matrix in flavor-basis

ρ =
∑
n

pn |ψn⟩ ⟨ψn| ≡
[
fee fex
fxe fxx

]
In the absence of inelastic collisions, the density matrix
evolves according to ∂

∂tρ = −i [H, ρ], where H is the ”ef-
fective Hamiltonian” of the system. Introducing collision
terms C(E) gives the basic QKE we are interested in:

∂ρ(E)

∂t
= −i [H(E), ρ(E)] + C(E) (1)

Where the H(E) may be split into vacuum Hamiltonian,
HV , and thermal potential HT (E):

H(E) = ω(E)HV +HT (E) +HL(E) (2)

HV (E) =

[
− cos 2θV sin 2θV
sin 2θV cos 2θV

]
(3)

ω(E) =
∆m2

4E
(4)

HT (E) = hT (E)

[
1 0
0 0

]
+
hT (E) cos2 θW

2

60

7π4

∫ ∞

0

dĒ′Ē′3
(
ρ(Ē′) + ρ̄(Ē′)

)
(5)

hT (E) = −28π sin2 θW
45α

E

T
(6)

HL(E) =
GF√
2π2

∫ ∞

0

dĒ′Ē′2
(
ρ(Ē′)− ρ(Ē′)

)
(7)

Where θV is the vacuum neutrino flavor mixing angle,
∆m2 is the difference between the two squared mass
eigenvalues, θW is the weak mixing angle, and Ē ≡ E/T .
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The two terms of the thermal potential (equation 28)
are the electron-positron and neutrino-antineutrino con-
tributions, respectively.

The collision term C(E) accounts for neutrino-electron
(positron) collisions with flavor-dependent scattering am-
plitudes. To accommodate flavor-dependent interactions,
we introduce the matrix

Y =

[
ye 0
0 yx

]
(8)

and define

δ ≡ ye − yx
ye + yx

δ characterizes the degree to which the collisions vary by
flavor; δ = 0 corresponds to “flavor blind” collisions. The
collision term is given by

C(E) = −
∫ ∞

0

dE′E′2K(E,E′)
(
{Y (1− ρ(E′))Y, ρ(E)}

−e−(E′−E)/T {Y ρ(E′)Y, 1− ρ(E)}
)

where K(E,E′) is the collision kernel. Note that C(E)
includes “gain” and “loss” terms. Dropping Pauli-
blocking, this simplifies to

C(E) = −
∫ ∞

0

dE′E′2K(E,E′)
(
{Y 2, ρ(E)}

−e−(E′−E)/T 2Y ρ(E′)Y
)

(9)

For the antineutrino, we use the convention ω̄(E) =
−ω(E) and H̄T (E) = −HT (E). The QKE for antineu-
trinos is therefore given by

∂

∂t
ρ̄(E) = i

[
H̄(E), ρ̄(E)

]
+ C̄(E) (10)

Where C̄(E) is as above (equation 9), but with ρ̄ replac-
ing ρ and

H̄(E) = −ω(E)HV −HT (E) +HL(E) (11)

. Note that the matter potential term HL keeps the same
sign as in the neutrino Hamiltonian.

B. Bloch Formalism

Any Hermitian matrix may be written in terms of the
Pauli matrices, therefore we define

ρ =
1

2

(
P0I + P⃗ · σ⃗

)
, ρ̄ =

1

2

(
P̄0I +

⃗̄P · σ⃗
)

(12)

H =
1

2

(
B0I + B⃗ · σ⃗

)
, H̄ =

1

2

(
B̄0I +

⃗̄B · σ⃗
)
(13)

It is worth taking a minute to appreciate the physical sig-
nificance of this construction. Recall that the diagonal

elements of the density matrix ρ represent the popula-
tions of each flavor. In the (I, σx, σy, σz) basis, diagonal
matrix entries are 1 + σz and 1− σz, respectively, there-

fore the σz−components of P⃗ and B⃗ characterize the
flavor-alignment of the system (We are not concerned
with the identity term I because multiples of I do not
contribute to the commutator). For example, Pz = P0

implies fee = 1 and fxx = 0, while Pz = −P0 implies
fee = 0 and fxx = 1. Plugging equations 12 and 13
directly into equation 1 yields

∂

∂t
P0 = C0(E)(14)

∂

∂t
P⃗ =

(
ω(E)B̂V + B⃗T (E) + B⃗L(E)

)
× P⃗ + C⃗(E)(15)

∂

∂t
P̄0 = C̄0(E)(16)

∂

∂t
⃗̄P =

(
−ω(E)B̂V − B⃗T (E) + B⃗L(E)

)
× ⃗̄P + ⃗̄C(E)(17)

where

B̂V =

sin 2θ̃
0

cos 2θ̃

 ; ω(E) =
∆m2

2E
; θ̃ =

π

2
− θV (18)

B⃗T (E) = hT (E)

0
0
1


+hT

cos2(θW )

2

60

7π4

∫ ∞

0

dĒ′Ē′3
[
P⃗ (Ē′) + ⃗̄P (Ē′)

]
(19)

B⃗L(E) =
GF√
2π2

∫ ∞

0

dĒ′Ē′2
[
P⃗ (Ē′)− ⃗̄P (Ē′)

]
(20)

C0(E) = −1

2
(ye + yx)

2

∫ ∞

0

dE′E′2K(E,E′)

×
[
(1 + δ2)

(
P0(E)− e

E′−E
T P0(E

′)
)

+2δ
(
Pz(E)− e

E′−E
T Pz(E

′)
)]

(21)

C⃗(E) = −1

2
(ye + yx)

2

∫ ∞

0

dE′E′2K(E,E′)

×
[
x̂
(
(1 + δ2)Px(E)− (1− δ2)e

E′−E
T Px(E

′)
)

+ŷ
(
(1 + δ2)Py(E)− (1− δ2)e

E′−E
T Py(E

′)
)

+ẑ
(
(1 + δ2)

(
Pz(E)− e

E′−E
T PzE

′
)

+2δ
(
P0(E)− e

E′−E
T P0(E

′)
))]

(22)

and C̄0(E), ⃗̄C(E) defined similarly to equations 21 and
22, but with P̄ swapped for P .
The form of equation 15 allows us to interpret the

Hamiltonian as an effective magnetic field influencing the

polarization vector P⃗ . When the processes are “suffi-

ciently adiabatic”, P⃗ precesses about B⃗. As we shall
show below, at a high temperature, the thermal term

B⃗T dominates, which causes B⃗ to align with σ̂z (“flavor
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alignment”). As the temperature decreases, the vacuum

term B̂(E) eventually dominates.

C. n Energy bins

We can further simplify the above system of equations
by replacing the continuum E ∈ (0,∞) with n bins of
width ∆E centered at E1, · · · , En. For brevity, we will

write P⃗ (Ei) ≡ P⃗i, ω(Ei) ≡ ωi, etc. We also replace the
collision kernel K(E,E′) with a matrix

gij =
1

2
(ye − yx)

2∆E K(Ei, Ej)E
2
j (23)

which will be populated with numeric values gij ∝
E2

j /(|Ei − Ej |+ 1). With these replacements, equations
14 through 22 become

∂

∂t
P0,i = C0,i(24)

∂

∂t
P⃗i =

(
ωiB̂V + B⃗T,i + B⃗L,i

)
× P⃗i + C⃗i(25)

∂

∂t
P̄0,i = C̄0,i(26)

∂

∂t
⃗̄Pi =

(
−ωiB̂V − B⃗T,i + B⃗L,i

)
× ⃗̄Pi +

⃗̄Ci(27)

B⃗T,i = hT,i

0
0
1


+hT,i

cos2 (θW )

2

60

7π4

∑
k

∆Ē Ē3
k

[
P⃗ (Ēk) +

⃗̄P (Ēk)
]
(28)

B⃗L,i =
GF√
2π2

∑
k

∆Ē Ē2
k

[
P⃗ (Ēk)− ⃗̄P (Ēk)

]
(29)

C0,i = −
∑
k ̸=i

gik

[
(1 + δ2)

(
P0,i − e

Ek−Ei
T P0,k

)
+2δ

(
Pz,i − e

Ek−Ei
T Pz,k

)]
(30)

C⃗i = x̂
(
− 2giiδ

2Px,i −
∑
k ̸=i

gik

[
(1 + δ2)Px,i

−(1− δ2)e
Ek−Ei

T Px,k

])
+ŷ

(
− 2giiδ

2Py,i −
∑
k ̸=i

gik

[
(1 + δ2)Py,i

−(1− δ2)e
Ek−Ei

T Py,k

])
+ẑ

(
−
∑
k ̸=i

gik

[
(1 + δ2)

(
Pz,i − e

Ek−Ei
T Pz,k

)
+2δ

(
P0,i − e

Ek−Ei
T P0,k

)])
(31)

C̄0,i and
⃗̄Ci are defined similarly. This construction also

has the benefit of formalizing the distinction between
“weakly” versus “strongly” coupled regimes; because gij
for j ̸= i controls the coupling between neutrinos in the

energy bins Ei and Ej (see equations 30 and 31), we say
the system is “strongly coupled” when gij/ωk ≪ 1 and
conversely is “weakly coupled” when gij/ωk ≫ 1. As we
shall show below, these QKEs with EU parameters are
generally in the weak coupling regime.

D. Early Universe

To model the EU system, we begin by rescaling our col-
lision matrix to be consisent with early neutrino collision
rates (see I B)

ḡij → gij = G2
FT

5ḡij (32)

where ḡij denotes the form given in equation 23. We
similarly rescale

h̄T,i → hT,i = G2
FT

5h̄T,i (33)

where h̄T,i denotes the form given in equation 6. Time
evolution along a neutrino’s worldline is given by the the
differential

D

Dt
≡ ∂

∂t
−Hp

∂

∂p
(34)

where p ≡ |p⃗|. Note that the assumption of spatial ho-
mogeneity has been used to drop the advection term. To
simplify this, we switch to coordinates t̄ and p̄, where

t̄ =
T0
T

p̄ =
p

T
(35)

Where T0 is some arbitary constant. For convience,
we take T0 = 1 MeV. In the radiation-dominated era,
T−1, p−1 ∝ a(t), therefore, after making the substitu-
tion, D/Dt can be rewritten as

D

Dt
→ t̄H

∂

∂t̄
(36)

Here (again consistent with the radiation-dominated era,
and neglecting contributions from nonrelativistic parti-
cles) we take Hubble’s constant to be

H =
hT 2

0

MP
· 1

t̄2
(37)

where

h =

(
4π3gρ
45

)1/2

(38)

gρ sums over the contributions of all relativistic parti-
cles. In the temperature range we are concerned with
(1 MeV ≤ T ≤ 30 MeV), the thermalized relativistic
particles are γ, e±, ν, ν̄, which gives gρ = 43/4 = 10.75
[1].
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Now, interpreting ∂/∂t in the previous sections to be
D/Dt, we divide the RHS of equations 24 through 31 by
t̄H. This amounts to transforming

ωi → ωi(t̄) =
1

t̄H
ωi

=

(
MP

hT 3
0

)
ω̄it̄

2 ≈ 0.2243× 1010 ω̄it̄
2 (39)

hT,i = G2
FT

5h̄T,i →
1

t̄H
h̄T,iG

2
FT

5

=
MPT

3
0G

2
F

h
h̄T,i ·

1

t̄4
≈ 0.30519 h̄T,i ·

1

t̄4
(40)

gij = G2
FT

5ḡij →
1

t̄H
ḡijG

2
FT

5

=
MPT

3
0G

2
F

h
ḡi,j ·

1

t̄4
≈ 0.30519 ḡij ·

1

t̄4
(41)

GF√
2π2

→ 1

t̄H

GF√
2π2

=
MPT0GF

h
√
2π2

1

t̄2
≈ 1.874× 109

1

t̄2
(42)

where ω̄i is defined similar to the form given in equation
18, but with E → Ei/T .

Inserting equations 39 through 41 into the QKEs as
they appear in equations 24 through 31 gives the final
form of the QKEs used in our model:

∂

∂t̄
P0,i =

(
MPT

3
0G

2
F

h

1

t̄4

)
C0,i (43)

∂

∂t̄
P⃗i =

[(
MP

hT 3
0

ω̄it̄
2

)
B̂V +

(
MPT

3
0G

2
F

h

h̄T,i

t̄4

)
B⃗T,i +

(
MPT0GF

h
√
2π2

1

t̄2

)
B⃗L,i

]
× P⃗i +

(
MPT

3
0G

2
F

h

1

t̄4

)
C⃗i (44)

∂

∂t̄
P̄0,i =

(
MPT

3
0G

2
F

h

1

t̄4

)
C̄0,i (45)

∂

∂t̄
⃗̄Pi =

[
−
(
MP

hT 3
0

ω̄it̄
2

)
B̂V −

(
MPT

3
0G

2
F

h

h̄T,i

t̄4

)
B⃗T,i +

(
MPT0GF

h
√
2π2

1

t̄2

)
B⃗L,i

]
× ⃗̄Pi +

(
MPT

3
0G

2
F

h

1

t̄4

)
⃗̄Ci (46)

III. RESULTS

In this section, we use the solve ivp PDE solver from
the scipy python library to numerically solve the system
of differential equations given in the previous section. We
analyze the results in three cases: vacuum Hamiltonian
(subsection III B), vacuum Hamiltonian with thermal po-
tential (subsection III C, and vacuum Hamiltonian with
thermal and neutrino lepton number potentials (subsec-
tion IIID). We assume the neutrinos are born electron
neutrinos (or antineutrinos) and have a Fermi-Dirac en-
ergy distribution:

P0,i(t̄ = 0) =
1

eĒi−µ̄ + 1
; P⃗i(t̄ = 0) =

1

eĒi−µ̄ + 1

0
0
1


P̄0,i(t̄ = 0) =

1

eĒi+µ̄ + 1
; ⃗̄Pi(t̄ = 0) =

1

eĒi+µ̄ + 1

0
0
1


Where µ̄ ≡ µ/T . Note that omitting the B⃗L term, as
is done in subsections III B and III C, we take µ̄ = 0.
Unless stated otherwise, the mixing angle θ̃ is taken to

be θ̃ = π/12; this corresponds to Finally, we take the
collision matrix ḡ to have components

ḡij =
1

Ē2
1

Ē2
j

|Ēi − Ēj |+ 1
(47)

A. Vacuum Hamiltonian

For completeness, the solutions for the “pure vacuum”

case (i.e., ∂P⃗i/∂t̄ = (0.2243×1010ωit̄
2)B̂V ×P⃗i) are shown

in figure 1. In the absence of thermal and lepton number

effects, the effective Hamiltonian vectors B⃗ and ⃗̄B main-
tain a fixed orientation and simply increase in magnitude

with t̄. P⃗ and ⃗̄P therefore precess about B̂V with increas-
ing angular frequency. With no inelastic collisions, the
populations of the energy bins likewise remains static.
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FIG. 1. Components of polarization vectors P⃗ and ⃗̄P (above)
and normalized “identity component” of polarization vectors
P0,i/Z, P̄0,i/Z for Z =

∑
j P0,j + P̄0,j (below) for vacuum

Hamiltonian. Different line colors represent different energy
bins (violet is higher energy, yellow is lower energy).

B. Vacuum Hamiltonian with Collisions

Now (and from this point onwards) we introduce the
inelastic collision terms. Figure 2 shows the components

of P⃗ and ⃗̄P as a function of t̄ for the 5-energy-bin case
and for various values of the collision-flavor-dependency
parameter δ. In general, increasing δ has the effect of

“damping” the oscillations of P⃗ and ⃗̄P (with δ = 0.5
showing the “overdamped” case–see figure 3). Figure 3

shows the normalized components of P⃗ and ⃗̄P plotted
with the normalized components of the effective Hamil-

tonian vector B⃗, ⃗̄B for the same values of δ. In each case,

P⃗ precesses about B⃗, and the amplitude of this oscilla-

tion is damped as t̄ increases. ⃗̄P precesses about − ⃗̄B in

a similar manner. Note that P⃗ and ⃗̄P only differ in the
y-component, which is consistent with the sign change

in the expression for the effective Hamiltonian (i.e., P⃗

and ⃗̄P precess along the same axes, but with opposite
handedness).

FIG. 2. Components of polarization vectors P⃗ and ⃗̄P for sev-
eral values of flavor-dependency parameter δ (from top to bot-
tom, δ = 0, 0.05, 0.5. Different line colors represent different
energy bins (violet is higher energy, yellow is lower energy).
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FIG. 3. Normalized components of polarization vectors

P⃗ /|P⃗ |, ⃗̄P/| ⃗̄P | (solid lines) and effective Hamiltonian vec-

tors B⃗/|B⃗|, ⃗̄B/| ⃗̄B| (dashed lines) for several values of flavor-
dependency parameter δ (from top to bottom, δ = 0, 0.05, 0.5.
Different line colors represent different energy bins (violet is
higher energy, yellow is lower energy).

FIG. 4. Normalized “identity component” of polarization vec-
tors P0,i/Z, P̄0,i/Z for Z =

∑
j P0,j + P̄0,j for several val-

ues of flavor-dependency parameter δ (from top to bottom,
δ = 0, 0.05, 0.5. Different line colors represent different en-
ergy bins (violet is higher energy, yellow is lower energy).

Figure 4 shows the normalized populations of the en-
ergy bins for neutrinos and antineutrinos (P0,i and P̄0,i,
respectively) as functions of t̄. For small values of δ, the
populations remain fixed at the initial Fermi-Dirac con-
ditions. As δ increases, a characteristic “spike” around
t̄ ≈ 1.5 becomes more pronounced. This behavior be-
comes clear when comparing the polarization vector com-
ponents (figure 2) to the expressions for C0,i and C̄0,i

(equation 30). Lower energy polarization vectors initially
precess with larger amplitudes but converge faster than
higher energies. Increasing δ also causes the different
energy bins to converge to smaller (and therefore nu-
merically “closer”) amplitudes. If δ is sufficiently large,
then the combination of these two effects produces re-
gions where

∑
k ̸=i Pz,i < eĒk−ĒiPz,k. This can be seen
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FIG. 5. Components of polization vectors P⃗ and ⃗̄P (above)
and normalized “identity component” of polarization vectors
P0,i/Z, P̄0,i/Z for Z =

∑
j P0,j + P̄0,j (below) for flavor-

dependent case δ = 1. Different line colors represent different
energy bins (violet is higher energy, yellow is lower energy).

most clearly on the figures for the extreme case δ = 1
(see figure 5), where the lowest energy bin for Pz (Pz,1,
plotted as the yellow line) is suppressed so strongly that
there are regions where Pz,i > Pz,1 for i > 1 (compare to
plots for δ = 0 and 0.05). For these regions, the second
term of the expression for C0,i (equation 30) changes,
resulting in ∂t̄P0,1 > 0 and ∂t̄P0,i < 0 for i > 1. As
the values of P0,i change, the first term in C0,i grows in
magnitude until it “corrects” for the previous behavior,
resulting in the initial distribution being restored.

C. Vacuum Hamiltonian with Thermal Potential
and Collisions

In this subsection, we introduce the e+e− and ν̄ν ther-
mal potentials (equation 28 with scaling given in equation
40) to the terms in the previous section. As with the pre-

vious section, figure 6 shows the components for P⃗ and
⃗̄P as a function of t̄ for various values of δ, and figure
7 shows these same components normalized and plotted

with B⃗/|B⃗| and ⃗̄B/| ⃗̄B|. With the introduction of the

thermal potential, B⃗ (resp. ⃗̄B) begins aligned with −ẑ
(resp. ẑ). Therefore, conversely to what is seen in vac-

uum, P⃗ aligns with −B⃗ and ⃗̄P aligns with ⃗̄B (see figure
7).
As with the previous section, increasing δ has the effect

of “damping” the polarization vectors, but this effect is
not as visually apparent as before. Note that the polar-
ization vectors precess about the effective Hamiltonian
vectors, but the amplitude of these oscillations is small
enough that they appear to be flat lines when plotted
(looking at the output files of the solve ivp function di-
rectly confirms that this is the case).

D. Vacuum Hamiltonian with Thermal and Lepton
Potentials and Collisions

Introducing the neutrino lepton number potential was
computationally challenging and we ultimately did not
succeed in producing solutions for the equations as they
are given in equations 43 —46 above. This is primar-
ily due to the limitations of the numerical PDE solver.
Given that the neutrino lepton number potential is scaled
by a factor of 1.874 × 109 (compared to the scaling of
0.30519 for the thermal potentials), the error tolerances
on the PDE solver needed to extraordinarily small to
avoid being dominated by noise. However, this forced
the program to use time steps ∆t̄ that were so small as
to be nonphysical. To proceed, we introduce a scaling
factor κ < 1 to the neutrino lepton potentials:(

MPT0GF

h
√
2π2

1

t̄2

)
B⃗L,i → κ

(
MPT0GF

h
√
2π2

1

t̄2

)
B⃗L,i

We proceed by gradually increasing the value of κ and
looking at the qualitative trends. The largest value of κ
we were able to run was κ = 0.001.
The neutrino lepton number potential highly sup-

presses the magnitude of the neutrino and antineutrino
polarization vectors–for this reason we will focus on only
the normalized components. Figure 9 compares the plots
for κ = 10−5 and κ = 10−3 for µ̄ = 1e− 3 in the five en-
ergy bin case. For sufficiently large κ, the neutrino lepton
number potential dominates and the effective Hamiltoni-
ans for neutrinos and antineutrinos are essentially the
same (see equations 44 and 46). Thus we no longer have
neutrinos and antineutrinos precessing about indepen-
dent effective Hamiltonian vectors, but, rather, neutri-
nos and antineutrinos precessing about the same vector
in opposite alignment.
A few other general trends are also apparent: First, af-

ter an initial period of rapid oscillation, neutrinos emerge
aligned with the positive ẑ-axis while anti-neutrinos
emerge aligned with the negative ẑ-axis. This corre-
sponds to neutrinos decoupling as their original electron-
flavor and antineutrinos oscillating to other flavors. This
is most clear while looking at the normalized plots (see
figures 9 and 10).
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FIG. 6. Components of polarization vectors P⃗ and ⃗̄P for
several values of flavor-dependency parameter δ (from top to
bottom, δ = 0, 0.05, 1. Different line colors represent different
energy bins (violet is higher energy, yellow is lower energy).

FIG. 7. Normalized components of polarization vectors

P⃗ /|P⃗ |, ⃗̄P/| ⃗̄P | (solid lines) and effective Hamiltonian vec-

tors B⃗/|B⃗|, ⃗̄B/| ⃗̄B| (dashed lines) for several values of flavor-
dependency parameter δ (from top to bottom, δ = 0, 0.05, 1.
Different line colors represent different energy bins (violet is
higher energy, yellow is lower energy).
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FIG. 8. Normalized “identity component” of polarization vec-
tors P0,i/Z, P̄0,i/Z for Z =

∑
j P0,j + P̄0,j for several val-

ues of flavor-dependency parameter δ (from top to bottom,
δ = 0, 0.05, 1. Different line colors represent different energy
bins (violet is higher energy, yellow is lower energy).

Second, differences between neutrinos/antineutrinos
in distinct energy bins is suppressed. Indeed, in the
κ = 10−3 case one cannot distinguish the plots for the
different energy bins in the normalized plots (figure 11
shows details of the non-normalized κ = 10−3 plots).
Note that the energy distribution is still Fermi-dirac; fig-
ure 12 shows the normalized P0 and P̄0 components for
the κ = 10−3 and µ̄ = 10−3 case (the plots are identical
for other values of µ̄).

Third, the effect of varying µ̄ is rather weak. Figure 10
shows the normalized polarization vector components for
κ = 10−3 and µ̄ = 10−8, which may be compared with
the κ = 10−3 and µ̄ = 10−3 plot in figure 9. .

Interestingly, this reversal of the neutrino polarization
vector is not consistently observed when fewer than five

FIG. 9. Normalized components of polarization vectors

P⃗ /|P⃗ |, ⃗̄P/| ⃗̄P | (solid lines) and effective Hamiltonian vectors

B⃗/|B⃗|, ⃗̄B/| ⃗̄B| (dashed lines) for several values of rescaling κ
(from top to bottom, κ = 10−5, 10−3. Different line colors
represent different energy bins (violet is higher energy, yellow
is lower energy).

energy bins are used. Figure 13 shows the normalized
polarization vector components for the 3 energy bins with
κ = 10−3 and µ̄ = 10−3. This plot is interesting for a
few reasons: comparing it with figure 10, we see that
all components appear to change sign (i.e., it is instead
antineutrinos which emerge strongly aligned with the +ẑ-
axis).

IV. DISCUSSION AND CONCLUDING
REMARKS

In summary, we have found the following qualitative
results:
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FIG. 10. Normalized components of polarization vectors

P⃗ /|P⃗ |, ⃗̄P/| ⃗̄P | (solid lines) and effective Hamiltonian vectors

B⃗/|B⃗|, ⃗̄B/| ⃗̄B| (dashed lines) for rescaling κ = 10−3 and chem-
ical potential µ̄ = 10−8. Different line colors represent differ-
ent energy bins (violet is higher energy, yellow is lower en-
ergy).

• Inelastic collisions between neutrinos/antineutrinos
has the effect of “damping” flavor oscillations.
When potential terms are added to the effective
Hamiltonian, changing the collision parameter δ
(which characterizes flavor-dependency) does not
lead to significant qualitative differences.

• Neutrinos and antineutrinos emerge aligned or anti-
aligned with the effective Hamiltonian vector (i.e.,
mass-aligned), which, in tern, is strongly (but not
perfectly) aligned with the ẑ-axis. Thus the mass
and flavor eigenstates remain distinct.

• The (rescaled) neutrino lepton number potential in-
duces strong qualitative differences between neutri-
nos and antineutrinos. Namely, neutrinos emerge
strongly aligned with the +ẑ-axis while antineutri-
nos emerge strongly aligned with the −ẑ-axis. This
corresponds to neutrinos maintaining their flavor
and antineutrinos switching flavor with high prob-
ability.

• All interactions and potential terms resulted in the
system decoupling in a Fermi-Dirac energy distri-
bution. In the flavor dependent case (δ > 0), this
distribution is temporarily disrupted as a result of
the Hamiltonian vectors for each energy bin “flip-
ping” at different times.

Perhaps the most remarkable finding is that the neutrino
lepton number potential results in the neutrino polariza-
tion vectors “flipping” to the positive ẑ axis. This be-
havior is not seen in the absence of the neutrino lepton
number potential (except in the vacuum case), nor is it

FIG. 11. Detail of components of polarization vectors

P⃗ /|P⃗ |, ⃗̄P/| ⃗̄P | (solid lines) and effective Hamiltonian vectors

B⃗/|B⃗|, ⃗̄B/| ⃗̄B| (dashed lines) for rescaling κ = 10−3 and chem-
ical potential µ̄ = 10−4 (above) and µ̄ = 10−8 (below). Differ-
ent line colors represent different energy bins (violet is higher
energy, yellow is lower energy)

consistently observed when fewer than five energy bins
are used. Given the technological difficulties with im-
plementing the neutrino lepton potential, we have been
unable to diagnose this behavior.
These findings (particularly those relating to the neu-

trino lepton number potential) would be improved with
better technological capabilities. Naturally it would have
been ideal to have solutions for the full κ = 1 scaling.
This paper has restricted itself to the n = 5 energy bin
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FIG. 12. Normalized “identity component” of polarization
vectors P0,i/Z, P̄0,i/Z for Z =

∑
j P0,j + P̄0,j for lepton po-

tential rescaling κ = 10−3 and chemical potential µ̄ = 10−3.
Different line colors represent different energy bins (violet is
higher energy, yellow is lower energy).

FIG. 13. Normalized components of polarization vectors

P⃗ /|P⃗ |, ⃗̄P/| ⃗̄P | (solid lines) and effective Hamiltonian vectors

B⃗/|B⃗|, ⃗̄B/| ⃗̄B| (dashed lines) for 3-energy-bin-case and rescal-
ing κ = 10−3 and chemical potential µ̄ = 10−3. Different line
colors represent different energy bins (violet is higher energy,
yellow is lower energy).

case; however, in light of our finding that the neutrino
lepton number potential exhibits energy-bin-dependent
behavior, n = 5 is likely not representative of the EU
environment.
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