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The sensitivity of the He6-CRES experiment is limited by frequency-dependent oscillations in
the signal-to-noise ratio (SNR) observed in initial data. We model these oscillations as a result
of various reflective components in the apparatus forming a multi-mirror Fabry-Pérot cavity. This
paper analyzes this effect using both traditional optical methods and cascaded scattering parameters.
We also characterize several elements of our radio-frequency (RF) system, namely the quarter-wave
polarizer and circular-to-rectangular waveguide transition. Electromagnetic simulations of key RF
components along with a model for the reflections will allow us to mitigate the issue of irregular
SNR.

I. INTRODUCTION

The He6-CRES experiment is a nuclear physics ex-
periment that will perform high-precision β-decay spec-
troscopy of 6He and 19Ne through a novel frequency-
based experimental technique called Cyclotron Radiation
Emission Spectroscopy (CRES) [1]. The experiment is a
low-energy probe of physics Beyond the Standard Model,
as distortions to the β spectrum may correspond to non-
standard scalar and tensor couplings, parametrized by
the Fierz interference term bFierz [2].

A. Cyclotron Resonance Emission Spectroscopy

A particle with charge q and mass m (e.g. electron or

positron, denoted β±) in a magnetic field B⃗ undergoes
cyclotron resonance,

qv⃗ × B⃗ = γ
mv2

r
. (1)

Taking E = γmc2, the frequency of cyclotron reso-
nance fc for a β± with energy E is given by

fc =
|q|
2π

Bc2

E
. (2)

The frequency of cyclotron resonance depends in-
versely on E. Measuring fc is thus a proxy for measuring
the energy of a β± particle without directly interacting
with it [3]. As a charged particle spins, it emits coherent
circularly polarized electromagnetic radiation at the cy-
clotron frequency, which couple to the fundamental mode
of a circular waveguide and are received by an antenna
and amplified. The cyclotron frequency increases as the
particle loses energy to radiation, so CRES events appear
as chirped signals at the LNA output.

CRES was pioneered by the Project 8 collaboration to
measure the neutrino mass via the tritium β spectrum
endpoint (18.6 keV) [3, 4], as a low-volume alternative

to other precision β spectroscopy experiments such as
KATRIN [5]. The He6-CRES experiment applies CRES
over a much broader energy bandwidth, to measure full β
spectra rather than just the region around the endpoint.
CRES has various advantages compared to traditional

β calorimetry methods. Experiments that involve de-
positing energy in a semiconductor or scintillator detec-
tor must account for losses such as backscattering and
bremsstrahlung, and energy resolution is limited by the
detector material. CRES does not directly measure β in-
teractions with matter, and energy resolution is fixed by
the frequency resolution of the Fourier transform applied
to the amplifier readout [1].

B. He6-CRES RF system

A diagram of the Phase II He6-CRES RF system is
given in Figure 1. CRES events occur in the decay
cell (A), which contains the gaseous β emitter. CRES
radiation leaves the decay cell and passes through a
circular-to-linear polarizer (B). The linearly polarized
wave passes through a waveguide transition (C) to a
rectangular waveguide (D), to RF low-noise amplifiers
(LNAs) (E). CRES radiation leaving the decay cell in the
opposite direction propagates through a circular waveg-
uide to a waveguide terminator (F).

FIG. 1: Diagram of He6-CRES system. A: Decay cell.
B: Polarizer. C: circular-to-rectangular waveguide

transition. D: Rectangular waveguide. E: to LNAs. F:
circular waveguide terminator.

In the previous iteration of the experiment (Phase I),
the two sides of the decay cell had symmetric RF systems
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apart from the waveguide U-bend. Instead of a termina-
tor at F, a second RF amplifier system read CRES data
in parallel to the readout at E.
The amplifier readout is digitized at 2400 MHz in bins

of 213 samples. The Fourier transform of the binned data
forms a 2D plot of Fourier amplitude in frequency and
time.

C. Observed SNR oscillations

FIG. 2: SNR vs. frequency varying magnetic field
strength, before installing terminator

In the intial He6-CRES data collection stage (Phase
I), we observed a strong frequency-dependent oscillations
in the signal-to-noise ratio (SNR), as shown in Figure 2
at various B-field strengths. These oscillations are char-
acteristic of internal reflections of CRES radiation off
of various components in the RF assembly causing con-
structive and destructive interference of the signal. The
waveguide terminator at point F of Figure 1 was installed
to mitigate these reflections, but the SNR oscillations
remained a prominent feature of the experimental data
(Fig. 3). SNR variations interfere with accurate CRES
event reconstruction, limiting our sensitivity to bFierz. It
is therefore critical for the experiment to exhibit uni-
form and sufficiently high SNR over the frequency range
of interest, and efforts to understand, characterize, and

FIG. 3: SNR vs. frequency varying magnetic field
strength, with terminator

correct this issue are underway.

II. THEORY OF WAVEGUIDES

A plane wave propagating losslessly along the z-axis
has a harmonic time and z dependence as ei(ωt−βz), where
the propagation constant β = 2π

λ = ω
vp
, carrying a wave

number k = 2π
λ0

= ω
c , where λ is the physical (peak-

to-peak) wavelength, vp is the phase velocity, λ0 is the
free-space wavelength of a plane wave with frequency ω,
and c = 1√

εµ [6]. Representing the wave as a phasor

and omitting the time-dependent term, the phase of the
wave is ϕ(z) = βz, and the phase shift picked up over a
distance of L is accordingly ϕ = βL.
In a TEM structure (e.g. coplanar waveguide or free

space), β = k. For TE or TM waves, as in circular
and rectangular waveguides, this simplifying relationship
does not hold, instead propagation is described by the
cutoff wavelength kc, such that [6]

k2c = k2 − β2. (3)

To support eiβz propagation through a waveguide, it
is required that β be real, equivalently

β2 = k2 − k2c > 0. (4)

kc is determined by solving Maxwell’s Equations inside
the specific geometry of the waveguide, and depends on
the waveguide dimension mode indices (n,m). With R
as the inner radius of the circular waveguide, a and b as
the inner dimensions of the rectangular waveguide along
x and y respectively, [6]

kc =

√(nπ
a

)2

+
(mπ

b

)2

(rectangular waveguide) (5)

kc =
pnm
R

(circular waveguide, TMnm) (6)

kc =
p′nm
R

(circular waveguide, TEnm). (7)

Here, pnm and p′nm denote the mth zero of the Bessel
function of the first kind Jn(x) and its derivative J ′

n(x).

(a) (b)

FIG. 4: Cross section of TE10 in a rectangular
waveguide (a) and TE11 in a circular waveguide,

polarized along x (b) [7]

The fundamental mode of a waveguide is the mode
with the lowest cutoff wave number. In a rectangular
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waveguide, the fundamental mode is (taking a > b with-
out loss of generality) the TE10 mode, with kc =

π
a (Fig.

4a). In a circular waveguide, this is the TE11 mode, with
kc ≈ 1.8412

R , depicted in Figure 4b. This mode is degen-
erate with continuous polar symmetry, so it is conven-
tionally analyzed as two orthogonal polarizations along
x and y.

III. MODELING MULTI-PATH PROPAGATION

The observed SNR oscillations can be explained as evi-
dence of multi-path propagation due to reflections inside
the RF system. At any reflective interface inside the
system, some of the signal is transmitted and some is
reflected. With multiple reflective interfaces, the signal
may reflect internally an arbitrary number of times, in-
terfering with other signals inside the cavity and creating
frequency-selective effects similar to what we observe.

A. Fabry-Pérot interferometer

A well-known example of the frequency selection effect
in multi-path propagation is a Fabry-Pérot interferome-
ter, constructed with two thin parallel mirrors forming
an optical cavity. Light can only escape this cavity when
it is in resonance with the cavity, which occurs when the
transmitted and reflected waves are in phase and con-
structively interfere.

FIG. 5: A diagram of a Fabry-Pérot cavity, including
the 0th, 1st, and 2nd order reflections [8]. ϕRT = 2ϕ.

We can directly analyze the transmission through a
2-mirror Fabry-Pérot cavity in terms of the coefficient
of reflection r and transmission t of the mirrors, which
denote the proportion of the incident field amplitude that
is reflected or transmitted at the mirror. We may express
the separation of the mirrors in terms of the phase ϕ
picked up by a wave traveling from one to the other,
with implicit frequency dependence.

To zeroth order, a wave transmits through the first mir-
ror, travels to the second mirror, and transmits through,
transforming by a factor of T0 = t2eiϕ. In the first or-
der reflection, the wave reflects at the second mirror,
reflects at the first mirror, and then transmits out, for
a total transmission factor of T1 = t2r2ei3ϕ. The n-
th order reflection transmits through both mirrors and

makes n round-trip reflections for a transmission factor
of Tn = t2r2neiϕ(1+2n). The overall transmission factor,
summing over all reflection orders, is thus a geometric
series

Ex = t2eiϕ
∞∑

n=0

r2nei2nϕ =
t2eiϕ

1− r2ei2ϕ
. (8)

B. Multi-path reflection as a Markov chain

Extending the previously detailed analysis beyond the
standard 2-mirror case to N > 2 mirrors proves chal-
lenging due to the combinatorial explosion of possible
paths light can take through the system. Instead, we can
model the optical cavity by borrowing from the theory of
Markov chains [9].

A Markov chain is a stochastic process formed of dis-
crete states, where the probability of transitioning to any
state only depends on the current state. Markov chains
may be represented graphically as a state diagram, or nu-
merically as a square matrix R, where Rij represents the
transition probability from state i to state j. Further-
more, (Rk)ij represents the transition probability from
state i to j after k steps.

To construct a Markov chain representing an optical
cavity, we may consider a wave inside the apparatus as
existing in one of a finite number of states, enumerated
by region in the system and direction of propagation.
Instead of probabilities between the states, we may in-
stead express the amplitude and phase ratio between
these states in terms of r, t, and ϕ. As a simple ex-
ample, a 2-mirror Fabry-Pérot cavity can be represented
with the Markov chain shown in Figure 6, along with its
corresponding transition matrix.

0R

0L

r0e
iϕ0 r1e

iϕ0 ⇐⇒ R =

[
0 r1e

iϕ0

r0e
iϕ0 0

]

FIG. 6: Markov chain representing a 2-mirror
Fabry-Pérot cavity [9].

The total wave amplitude in each state in the system is
expressed in the fundamental matrix of the Markov chain
F , denoting the overall transition probability (here, am-
plitude) between any two states. It is derived by evalu-
ating the following Neumann series, in close analogy to
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0R

0L 1L 2L

1R 2R . . .

. . .
t1e

iϕ1 t2e
iϕ2

t1e
iϕ0 t2e

iϕ1

r0e
iϕ0 r1e

iϕ0 r1e
iϕ1 r2e

iϕ1 r2e
iϕ2 r3e

iϕ2

FIG. 7: Markov model for a N -mirror Fabry-Pérot Cavity. The first 3 regions (corresponding to 4 mirrors) are
shown. Note the traditional 2-mirror Fabry-Pérot Cavity is a subset ({0R, 0L}) of this larger diagram [9].

a geometric series [10]

F =

∞∑
k=0

Rk = (I−R)−1. (9)

This sum necessarily converges since |Rij | < 1.
The fundamental matrix follows simply from (9).

T = (I−R)−1 =
1

1− r0r1ei2ϕ0

[
1 r0e

iϕ0

r1e
iϕ0 1

]
(10)

The proportion of the incident signal that ultimately
leaves the cavity is the total amount in the 0R state T0,0

times the phase and amplitude picked up by transmission
through each mirror. Taking r2 = r0r1, we recover Equa-
tion 8 exactly. Unlike before, this analysis extends nat-
urally to N > 2 mirror systems, by constructing Markov
chains similar to Figure 7. Additional model parame-
ters, for example polarization-dependent behavior, can
be included simply by extending the chain with addi-
tional states with appropriate transition factors.

C. Scattering parameters

Scattering parameters (S-parameters) are a type of lin-
ear network parameter that relate the amplitudes of in-
cident and reflected waves at each port of a microwave
network. S-parameters describe how much a wave inci-
dent on any one port excites a wave leaving a specific
port. By using field amplitudes, S-parameters bypass
the ambiguity of defining voltage and current in non-
TEM structures, and lend themselves especially well to
analysis of components at microwave frequencies.

A typical 2-port microwave network is depicted in Fig-
ure 8.

The S-parameters for a 2-port network are defined as:(
b1
b2

)
=

[
S11 S12

S21 S22

](
a1
a2

)
(11)

a1

b1 a2

b2

[S]

FIG. 8: 2-port S-parameters, with incident and reflected
field amplitudes an and bn

In the canonical 2-port example, S11 = b1
a1
|a2=0 is the

reflection at port 1 when port 2 is terminated, and S21 =
b2
a1
|a2=0 is the transmission from port 1 to port 2 when

port 2 is terminated.
A general N -port network can be described by the fol-

lowing S-parameter matrix. Generally, Sij expresses how
much a signal incident on port j excites a wave at port
i, when all ports other than j have zero incident signal.b1

...
bn

 =

S11 . . . S1n

...
. . .

...
Sn1 . . . Snn


a1

...
an

 (12)

D. Transfer scattering parameters

Transfer scattering paramaters, or T-parameters, are
another wave-amplitude network parameter that allow
for characterizing the overall performance of several “cas-
caded” microwave networks in series [7]. T-parameters
allow for cascading microwave networks in close analogy
to using ABCD network parameters for cascading 2-port
lumped element networks. For a two-port network, the
T-parameters are defined as(

b1
a1

)
=

[
T11 T12

T21 T22

](
a2
b2

)
(13)

Consider two two-port networks with T-parameters T1

and T2. The T-parameter matrix describing the series
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combination of the two networks is simply T = T1T2, and
this cascading extends to an arbitrary number of net-
works in series. Most importantly, while T-parameters
cannot be physically measured in the same way as S-
parameters, there exists a well-known conversion between
S-parameters and T-parameters [7],

T11 = S12 −
S11

S22
S21 S11 =

T12

T22

T12 =
S11

S21
S12 = T11 −

T12T21

T22

T21 = −S22

S21
S21 =

1

T22

T22 =
1

S21
S22 = −T21

T22

(14)

Using these conversions, we can obtain “overall” S-
parameters of a series of cascaded microwave networks
with known S-parameters S1, . . . , SN by following a sim-
ple algorithm:

1. Using S to T transformations from (14), convert
each S1, . . . , SN to T-parameters T1, . . . , TN .

2. Calculate the overall T parameter of the entire net-
work with simple matrix multiplication

T =
∏
n

Tn.

3. Using T to S transformations from (14), convert T
to the overall network S parameters.

This overall S-parameter matrix takes into account the
full wave behavior throughout the whole network natu-
rally from the T-parameter chaining, without additional
analysis needed.

E. Generalizing T-parameters to N-port networks

Recent studies [11, 12] explore the idea of generaliz-
ing the traditional two-port T-parameter definition to a
cascaded series networks with N > 2. The S-parameter
matrix of an N -port network remains square (N × N)
for all N . The definition of the T-parameters implicitly
requires denoting ports as input (“external”) ports or
output (“internal”) ports for chaining, so in unbalanced
networks with a different number of internal and exter-
nal ports the input/output symmetry is broken [11]. An
unbalanced network with will thus have a non-square T-
matrix. However, balanced networks still have a square
T-parameter matrix, and we will limit the scope of this
discussion to balanced 4-port networks, with two external
ports and two internal ports. The T-parameter matrix
for such a network with external ports 1,2 and internal
ports 3,4 isb1

b2
a1
a2

 =

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44


a3
a4
b3
b4

 (15)

Cascading 3 such networks is schematically represented
in Figure 9.

FIG. 9: Cascading three 4-port balanced networks with
T-parameters [11]

Working with ports assigned as external or internal,
N -port network parameters may be either between two
external ports (external-to-external), between two inter-
nal ports (internal-to-internal), internal-to-external, or
external-to-internal. Notice that a multiport network pa-
rameter matrix can be decomposed into submatrices of
parameters that fall in the same “group” of input and
output ports, as in (16).

S =

[
[See] [Sei]
[Sie] [Sii]

]
T =

[
[Tee] [Tei]
[Tie] [Tii]

]
(16)

It can be shown [11, 12] that not only does a trans-
formation between N -port S- and T-parameters exist, it
generally preserves much of the familiar structure of (14).

T11 = Sei − SeeS
−1
ie Sii See = TeiT

−1
ii

T12 = SeeS
−1
ie S12 = Tee − TeiT

−1
ii Tie

T21 = −S−1
ie Sii S21 = T−1

ii

T22 = S−1
ie S22 = −T−1

ii Tie

(17)
This is an appealing formalism for analyzing RF ele-

ments in the He6-CRES experiment. The fundamental
mode of a circular waveguide is the TE11 mode, which
is degenerate with polar symmetry. We decompose this
mode into orthogonal x and y polarizations, which can be
treated as two independent “virtual” ports at the same
“physical” port. In this sense, a two-ended component
in a circular waveguide can be analyzed as a balanced
4-port network.

IV. HFSS SIMULATION OF RF COMPONENTS

Full-wave simulations of the RF components were per-
formed in Ansys HFSS, a finite-element method solver for
full-wave electromagnetic simulations. The geometries of
various components were modeled and assigned material
properties. The waveguide structure enclosing each com-
ponent was assigned wave-port excitations at either end,
which instructs HFSS to numerically solve for the modes
of the waveguide in order of increasing cutoff frequency,
then to express the S-parameters of the structure in terms
of the waveguide modes at the port. Ansys HFSS reports
S-parameters for each mode of each physical port of the
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structure being simulated. For legibility, this document
attempts to retain the familiar two-port language (S11,
S12, S21, and S22) with an additional qualifier for the po-
lariztion of the mode in question, rather than use 4-port
notation.

A. Circular-to-linear polarizer

The quarter-wave polarizer applies a 90◦ relative phase
shift between orthogonal components of a wave at 45◦ rel-
ative to the orientation of the polarizer. This allows for
the conversion of circularly polarized waves to linearly
polarized waves as well as the reverse. Traditionally, this
polarization is performed with a birefringent crystal [13],
but the He6-CRES polarizer is a diamond-shaped dielec-
tric sheet inside a circular waveguide (diameter 0.455”),
for improved broadband performance (Fig. 10).

FIG. 10: Polarizer model in HFSS

FIG. 11: Polarizer input reflection (S11, all TE11

polarizations)

In simulation, S11 is below -25 dB for both modes and
cross-mode excitations. There is slight asymmetry be-
tween the x-polarized and y-polarized modes, notably in
a resonance at around 19.5 GHz in the reflection from
the x-polarized mode into itself (Fig. 11).

FIG. 12: Polarizer transmission (S21, all TE11

polarizations)

Simulated S21 of the polarizer is near -3 dB for all
polarizations, corresponding to half-power transmission
(Fig. 12). This makes sense: a linearly polarized wave is
converted to a circularly polarized wave, a superposition
of two orthogonally polarized waves. Half the power of
a wave transmits as a component polarized along x, and
half transmits polarized along y. There is a slight asym-
metry due to imperfect polarization: about -2.8 to -2.65
dB is transmitted across polarizations, while -3.5 to -3.3
dB transmits in the original polarization.

FIG. 13: Polarizer axial ratio and relative phase shift
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Another important figure of merit in studying the qual-
ity of elliptical polarization is the axial ratio, the ratio
between the major and minor axis amplitudes of an el-
liptically polarized wave. Perfect circular polarization
has an axial ratio of 0 dB, and by convention a practical
circularly polarized wave is understood to have an axial
ratio < 3 dB. Additionally, we plot the phase difference
between S21 to both x- and y-polarized modes from either
polarization at the input.

We observe an excellent axial ratio < 0.04 dB across
our frequency range of interest. The relative phase shift
between x and y components of a wave is within 1◦ of
90◦ for both x- and y-polarized incident waves.

B. Circular-to-rectangular waveguide transition

FIG. 14: Circular-to-rectangular transition model in
HFSS. Input at circular port, output at rectangular

port.

The circular-to-rectangular transition (“taper”) is a
continuous deformation from a circular waveguide to a
WR-42 rectangular waveguide. Notably, only the fun-
damental TE01 mode of a rectangular WR-42 waveguide
has a cutoff frequency below our frequency range of in-
terest, at 14.05 GHz. The next mode, TE02, has a cutoff
frequency of 28.10 GHz. The TE01 mode has a cutoff
frequency of 34.71 GHz, and is of more interest than the
TE02 mode as it is orthogonal to the TE01. Components
of a wave that project onto non-propagating modes re-
flect, so this taper is of interest as the first obvious loca-
tion where high reflection may occur the apparatus.

The model (Fig. 14) is oriented so the E-field of the
propagating TE10 is parallel to the y-axis. We anticipate
an incident wave linearly polarized along y to transmit.
The non-propagating TE01 mode has an E-field parallel
to x, so x-polarized waves are expected to reflect. We
can quantitatively observe this behavior in the reflection
(Fig. 15) and transmission (Fig. 16) characteristics.

We see nearly perfect reflection of x-polarized waves at
the circular input, and very little reflection of y-polarized
waves, between -40 and -30 dB. Reflection from either
polarization into the other is less than -38 dB with equal
magnitude from x to y as from y to x.

FIG. 15: Taper input reflection (S11, all TE11

polarizations).

FIG. 16: Taper transmission (S21 to rectangular TE10)

Similarly, in Figure 16 we observe nearly perfect trans-
mission (0 dB) from the y-polarized TE11 mode to the
propagating mode of the rectangular wave guide, but the
x-polarized mode does not transmit, with S21 < −38
dB. S21 from either input polarization into the non-
propagating mode is omitted.

V. CASCADING POLARIZER AND TAPER

The polarizer and circular-to-rectangular taper are in
series in the He6-CRES experiment and act as a larger
“unit” whose behavior is important to characterize. We
can also characterize the behavior of these components
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(a) x-polarized mode

(b) y-polarized mode

FIG. 17: S11 of both components in series

subject to a circularly polarized incident waves, as in the
actual CRES process. Furthermore, it provides an acces-
sible example to compare the 4-port network cascading
described in Section III E to HFSS results. We begin by
examining the system with linearly polarized TE11 modes
inputted at the circular waveguide. Then, we simulate a
circularly polarized wave at the input by superimposing
x- and y-polarized modes with a 90 degree phase shift.

We observe that both the x and y polarization inputted
into the combined system transmit -3 dB into the rect-
angular TE10 mode, or half-power (Fig. 18). Likewise,
both polarizations see about -6 dB reflected into them-
selves, about 1/4 power (Fig. 17). Intuitively, the polar-
izer transforms a linearly polarized wave into a circularly

(a) x-polarized mode

(b) y-polarized mode

FIG. 18: S21 of both components in series

polarized wave, which is a superposition of an x- and
y-polarized wave with equal magnitude. The y-polarized
component transmits, and the x-polarized component re-
flects off the waveguide taper. Half of the reflected com-
ponent appears in the x-polarized mode and half of it
appears in the y-polarized mode at the input. Addi-
tionally, the HFSS numerical simulations are closely ap-
proximated by the 4-port cascaded S-parameters (dashed
lines).
By combining the S-parameters with a π/2 phase shift

(±i), we can simulate the performance under a circularly
polarized wave.

Active Sij =
ExSij,x + EySij,y

|Ex|2 + |Ey|2
=

Sij,x ± iSij,y√
2

(18)
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FIG. 19: Active S11 of a LHCP (top) and RHCP
(bottom) wave

The HFSS model of the polarizer-taper assembly is ori-
ented to transmit left-hand circularly polarized (LHCP)
waves and reflect right-hand circularly polarized (RHCP)
waves. In Figure 19, we can observe that the Active S11
is very low (< −20 dB into each polarization) for a LHCP
wave, much better than the -6 dB result for linearly po-
larized input waves. We also see that -3 dB (half power)
of an incident RHCP wave is reflected into each polar-
ization, so all the power is reflected.

The transmission into the rectangular guide propagat-
ing mode (S21) of a LHCP wave is nearly 0 dB (Fig. 20),
even better than the -3 dB transmission observed with
linearly polarized input waves. We also see that < −20
dB of the power in a RHCP wave transmits.

FIG. 20: Active S21 of a LHCP (top) and RHCP
(bottom) wave

VI. CONCLUSION

The He6-CRES experiment is looking for signatures of
non-standard nuclear interactions in the 6He and 19Ne β
spectra, using a novel experimental technique that mea-
sures the cyclotron radiation frequency of individual β±

particles. We are investigating frequency-dependent os-
cillations in the signal-to-noise ratio of the system which
may be explained by reflections in the system causing a
Fabry-Pérot effect. Characterizing the RF behavior of
individual components in the experiment’s RF system is
important for building an accurate model of reflections
in the apparatus; this paper presents Ansys HFSS simu-
lations of two key components: the quarter-wave polar-
izer and circular-to-rectangular waveguide transition. We
show that under a circularly polarized incident wave, a
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properly aligned quarter-wave polarizer transmits no less
than -0.12 dB into a rectangular waveguide TE10 mode
and reflects no more than -20 dB. This is significantly
better performance than under a pure linearly polarized
incident wave.

When cascading the polarizer and waveguide transition
in series, we present the HFSS simulated S-parameters
alongside values calculated from the invididual compo-
nent S-parameters using Transfer S-parameters, or T-
parameters. Despite some error, possibly attributable to
mesh variation between simulations and other numerical
artifacts, the T-parameter approach broadly reproduces
simulation results in order of magnitude and key features.
This result suggests using T-parameters to cascade in-

dividually simulated components as a viable alternative
to performing computationally expensive simulations of
larger sections of the apparatus for the purpose of gener-
ally modeling the oscillations.

Further work remains to produce a simulation of the
Phase II circular waveguide terminator. Ultimately, with
accurate simulation of the terminator and decay cell, this
analysis will aim to produce a full model of the He6-
CRES RF system and to reproduce oscillations in the
signal transmitted from the decay cell to the LNA output.
Such an analysis will be used to correct the observed
SNR oscillations in future upgrades, allowing for better
precision and higher sensitivity to new physics.
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