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The light front formalism as applied in tilted coordinates is studied for the quantum harmonic
oscillator. An attempt is made to find the wavefunction for this system analytically, but numer-
ical techniques prove necessary. The wavefunction for the system is then found by breaking the
Hamiltonian in two parts and treating the latter part as a perturbation, and the first steps are
made in calculating the energy eigenvalues for the quantum harmonic oscillator in tilted coordinates

numerically.

I. INTRODUCTION

Theoretical nuclear physics aims to provide a sound
description of systems of hadrons and nuclei. Ideally,
these descriptions would come directly from quantum
chromodynamics. However, oftentimes approximation
methods prove necessary. The path integrals encoun-
tered from quantum chromodynamics in describing the
physics within the atomic nucleus are analytically dif-
ficult. Oftentimes, analytic or perturbation solutions
for low-energy QCD are difficult or impossible to obtain
due to the nonlinear nature of the strong force and the
large coupling constant. To alleviate these obstacles, nu-
clear physicists have introduced multiple computational
and theoretical techniques. Of particular interest in this
study is the light front formalism.

This study begins by introducing the light front for-
malism and its application to tilted coordinates. The
Hamiltonian operator is then formulated for the quantum
harmonic oscillator in tilted coordinates, and the process
of finding the wavefunction for this system is discussed.
Initially, attempts to find the wavefunction analytically
are made, but numerical techniques prove necessary in
approximating the energy eigenvalues for this system.

A. The Light Front Formalism

Introduced by Paul Dirac in his 1949 paper Ref [1], the
light front formalism employs an alternative synchroniza-
tion convention to provide a different description of the
physics within the atomic nucleus. Rather than using
the Einstein synchronization convention, the light front
formalism utilizes light front synchronization. The dif-
ferences between these two synchronization conventions
are visualized in Figure 1.

It is important to note that the time for the signal to
complete its full journey is the same under both conven-
tions. Ultimately, the physical predictions of a relativistic
theory are independent of the synchronization convention
applied. The use of a particular convention is arbitrary,
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FIG. 1. Visualization of Einstein versus light front synchro-
nization. Image Credit: Adam Freese. Under the Einstein
synchronization convention, a signal traveling between Alice
and Bob takes the same amount of time regardless of the di-
rection of travel. Thus, the time Bob receives Alice’s signal
is the average of time A, the time Alice sent the signal, and
time B, the time Alice received Bob’s signal. Under light front
synchronization, a signal can travel instantly int he negative
z-direction. Therefore, the time Bob sends the signal and the
time Alice receives it are both marked as time B.

but using new conventions may be more likely to solve
certain problems.

Freese and Miller acknowledge some concerns regard-
ing the usage of the light front formalism in Ref [2]. One
being that densities calculated in the light front may de-
scribe physical systems moving at the speed of light thus
distorting those calculations. Another concern is that the
negative components of four-vectors and tensors have no
clear physical meaning in the light front. To alleviate
these concerns, tilted coordinates apply light front time
but standard, Cartesian spatial coordinates.

B. Tilted Coordinates

Tilted light front coordinates are originally defined by
Blunden, Burkardt, and Miller in Ref [3] and are ex-



pressed in Eqn 1.
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The tilde above tilted coordinates distinguishes them
from standard, Cartesian coordinates. The question now
is how to employ tilted coordinates in describing physical
systems.

To apply tilted coordinates to quantum-mechanical
systems, we construct the suitable Hamiltonian operator
from the mass-shell relation for tilted coordinates. The
mass-shell relation for Cartesian coordinates is the usual:
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This relation looks different under tilted coordinates:
m? + p?
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The derivation of the mass-shell relation for tilted coor-
dinates is given in detail by Freese and Miller in Ref [2].
Interestingly, for tilted light front coordinates, we have
a rational expression for the mass-shell relation. Having
a rational expression rather than irrational could prove
promising in solving problems of interest in QCD.

With an expression for the mass-shell relation for tilted
coordinates, we construct the Hamiltonian operator:
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This allows us to solve for the wavefunction for physical
systems under tilted coordinates using the Schrodinger
equation.

II. FINDING THE WAVEFUNCTION

In understanding the light front formalism as applied
in tilted coordinates and its possible applications, it is
important to test its Hamiltonian in simple theories. In
this context, this project applies the light front formalism
to the quantum harmonic oscillator. The quantum har-
monic oscillator is a relatively simple quantum mechan-
ical system, and it is one of the few for which analytical
solutions are known making it a great system with which
to explore the properties of tilted coordinates.

With the suitable Hamiltonian expressed in Eqn 4, we
want to solve the Schrodinger equation for this system.
First attempts look to find the wavefunction analytically.
If analytic solutions can be found, that will directly yield
the energy eigenvalues for this system, the states where
the wavefunction does not change over time.

A. Analytical Attempt

Substituting in the operator identities for the Hamilto-
nian and momentum operators, the Schrodinger equation
we want to solve is:
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To solve this partial differential equation, we apply sep-
aration of variables. However, an interesting difficulty
arises in trying to separate out the Schrodinger equa-
tion. The Hamiltonian operator mixes together the or-
thogonal and z-components of the momentum operator.
This causes the equation to be inseparable in terms of x,
y, and z. Thus, a coordinate transformation is necessary:
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Using this coordinate transformation, the Schrédinger
equation is now separable in terms of u, v, and p,. Pro-
ceeding with separation of variables, solutions for the u
and v components of the wavefunction follow the form of
Weber polynomials:
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where A = A\, + \,. However, the ordinary differential
equation for the p, component of the wavefunction has a
complicated form:

Uy (—pam®w?) + 4, (m*w?)
by, (m2p.2 + 2iEm?p.? +m?
5m2w?

4p.

This ordinary differential equation proves to be a major
obstacle in analytically finding a wavefunction for the
quantum harmonic oscillator in tilted coordinates. There
are some boundary conditions we could try applying such
as having the wavefunction be finite at the origin and
vanish as p, goes to infinity. Still, due to the complicated
form for this p,-component of the wavefunction, pursuing
numerical techniques may prove to be more fruitful.
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B. Numerical Technique

The numerical technique applied to obtain the wave-
function involves breaking the Hamiltonian operator into
two parts, Hy and V:
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where p, represents the momentum operator in the x
and y directions and r? = z2 + 2. In redefining p,
as p, = Gt where n takes on integer values, this
breaks the original Hamiltonian operator into a radial
part and a longitudinal part along the z-axis. In doing
so, the Hy Hamiltonian can be treated as a modified pla-
nar harmonic oscillator which has solutions that can be
found analytically The obstacle to overcome in solving
the Schrédinger equation with Hy as the Hamiltonian
will be accounting for the additional m? and p? terms.
Having broken apart the original Hamiltonian operator,
we solve the Schrodinger equation with Hy and then ac-
count for the V part of the Hamiltonian as a small ad-
justment to the wavefunction. Ultimately, we obtain a
wavefunction that represents the complete Hamiltonian.

a. Planar Quantum Harmonic Oscillator: The Hy
Hamiltonian is treated as a modified planar quantum
harmonic oscillator which has known solutions. The solu-
tions for the planar quantum harmonic oscillator in cylin-
drical coordinates consist of Laguerre polynomials which
solve the following ordinary differential equation:

(L) + (a+1—2)(LY) +nLs =0.

In solving the Schrodinger equation with Hy as the
Hamiltonian operator we expect to see solutions contain-
ing Laguerre polynomials.

The following paragraph goes in detail describing how
the radial wavefunction is obtained for this system. In
defining & = \/pnmw?r?, the Schrodinger equation for
the radial part of the wavefunction becomes:
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where R(x) is the radial wavefunction. Letting R =
e~*/2H(z), equation 8 becomes:
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form of ordinary differential equations for which Laguerre
polynomials are solutions. The radial wavefunction is
now written:
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where k is a normalization constant. To account for the
influence of the V Hamiltonian operator, we multiply the
radial function by an exponential function:
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where L binds integration along the z-axis. Altogether,
Eqn 11 expresses the wavefunction for the light front
quantum harmonic oscillator in tilted, cylindrical coor-
dinates.

This now follows the

b. Normalization The wavefunction is normalized in
the longitudinal direction by dividing by v/2L. To nor-
malize the wavefunction radially, we construct the nor-
malization integral:
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where a = \/p,mw?, b = /ppmw?, 1 =&,,and ' = &,,.
The solution to integrals of this form is not found in ta-
bles of known integrals containing Laguerre polynomials,
so the normalization constant for the radial part of the
wavefunction is calculated individually for each matrix
element of the constructed Hamiltonian matrix.

III. CONSTRUCTING THE HAMILTONIAN
MATRIX

Now having a wavefunction for the light front quantum
harmonic oscillator in tilted coordinates, we construct
the Hamiltonian matrix. From this Hamiltonian matrix,
we can obtain approximate energy eigenvalues for this
system. Since the numerical technique breaks the Hamil-
tonian operator into two parts, the Hamiltonian matrix
is the sum of two matrices: one for Hy and another for
V. The matrix for Hy is relatively simple to construct
since analytical solutions to the Schrodinger equation ex-
ist with Hy as the Hamiltonian operator. Therefore, the
Hjy matrix is diagonal with the energy eigenvalues of the
radial wavefunction going down the diagonal.
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It is important to note that a mapping convention is
used to fill out the matrix elements since the energy
eigenvalues depend on two integer values: n and 1. The
mapping convention follows the following pattern.
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The V matrix takes more effort to construct. Using the
wavefunction in Eqn 11 as the basis, we calculate each
individual matrix element for a finite number of matrix
dimensions. First, the radial component of the wavefunc-
tion is normalized for the row/column numbers in ques-
tion using Eqn 12. For known values n and 1, the integral
in Eqn 12 can be solved. Then, the inner product of the
V Hamiltonian operator is taken with the wavefunction:
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The potential matrix is not diagonal, and there is no gen-
eral formula for matrix elements like in the case for the
Hy matrix. Therefore, the V matrix is finite for however
far out calculations are carried. As the dimensions of
the V matrix approach infinity, this method yields exact
energy eigenvalues. This is important to note regarding
the numerical technique being used. The value L confines
the wavefunction in the longitudinal direction, along the
z-axis. This confinement forces the wavefunction to go
to zero as it approaches -L. and +L in the z-direction.
Therefore, for large and small values L, this adjustment
for the V part of the Hamiltonian operator breaks down.
The following is the four-by-four example of the potential
matrix:
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The Hamiltonian matrix is also calculated symbolically
for the nine-by-nine case as expressed in Figure 2. It
is important to note the dependence on the square of
the bounds of integration in the longitudinal direction,
L?. This motivates analysis into the L-dependence of
the energy eigenvalues calculated using this numerical
technique. Do energy states exist where there is minimal
dependence on L?

To approximate the energy eigenvalues of the light
front quantum harmonic oscillator in tilted coordinates,
we sum the Hy and V matrices for increasing matrix size.
The summed matrix is diagonalized symbolically for the
four-by-four and nine-by-nine cases, but numerical meth-
ods are necessary for increasing dimensions. The eigen-
value dependence on L is visualized graphically for the
four-by-four and nine-by-nine matrix cases in Figures 2
and 3.
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Ultimately, we want to find regions where the wave-
function depends on L minimally since L is an arbitrary

L2 mw? L2 mw? L2 mw? L2 mw? L2 mw? L2 mw?
2 e 2 2 e 2 2 2
E 4n 4 P 4

2
mw’ 1 2 2 LEmw mw’ mw mw mw’
2 g Lomw 2 e 2 2 2 e 2
Cow? 1202 L2 nw? L2 mw? L2nw? L2mw? L2 mw?
2] =L mw 5 3 (2] 3 -=— 3
7 6 n 4n 47 n 45
L2 mw? ° e 120000 Zew? ek 2m? ° _2mw?
Pt 2 6 72 2 72 2
L2 mw? L2 mw? L2 mu? CZow? 1202 L2mw? L2 mw?
T2 T2 a2 e G Lbimwt o = e - 0
arn ,‘7 ar 7' 6 47 x
L2 mu? L2 mu? Cow? 122 L2nw? L2 mw? L2 mu?
e 2 e 2 2 gLomw 2 2 2
7 4n 6 4 x 45
2 2 2 2 202 202 2 2 2m2
LZmw L2 mw L2 mw _2nw ° LZmw iLzmwz _2nw 0

42 TR 42 2 an? 2

_2nw? ° _2nw?

2 02
L2 nw
B e 2

2

Zm?
. 2

2 2 2
7Lm2w 1202 7Lm2w
,‘ 6 n

2 w2 2 w2 2 w2 2 nu? 2 w2 202
LEmw: LSmw Lo mw LS mw: %) LEmw L") _Lmw iLmeZ

42 2 ar 2 an? 2

FIG. 2. Symbolic depiction of the 9x9 V matrix. The ground
state (n =n’ = 0,1 =1 = 0) is boxed in red.
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FIG. 3. Eigenvalue Dependence on L for the 4x4 Hamiltonian
matrix. The darkest line indicated by the red arrow represents
the ground state while lighter colors go towards higher energy
states.
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value introduced in confining the wavefunction. This re-
gion may be found in the ground state. Interestingly,
however, the ground state eigenvalue, the darkest color,
goes towards negative infinity for large values L while all
other eigenvalues tend to positive infinity as L increases.
Further study into the trend of the energy eigenvalues
as the Hamiltonian matrix approximation increase in di-
mensions is necessary to clarify this result.

Further, substituting in values m = 1.7fm™!, w =
2.5fm~ ", and L = 7% —2— into the diagonalized Hamil-

mw
tonians for the four-by-four and nine-by-nine cases yields

the following approximate eigenvalues expressed in Fig-
ures 4 and 5. These are common values used on the scale
of nuclear physics research. We do not necessarily ex-
pect these values to tend towards those of the quantum
harmonic oscillator in standard, Cartesian coordinates as
the dimensions of the Hamiltonian matrix increase.

IV. DISCUSSION AND CONCLUSION

In diagonalizing both the four-by-four and nine-by-
nine Hamiltonian matrices, we find that they both con-
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FIG. 4. Eigenvalue Dependence on L for the 9x9 Hamiltonian
matrix. The darkest line indicated by the red arrow represents
the ground state while lighter colors go towards higher energy
states.
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FIG. 5. Diagonalized 4x4 Hamiltonian matrix with m =

1.7fm71, w= 2.5fm71, and L =7 % \/;%

tain a dependence on L? and this will most likely continue
for larger Hamiltonian matrix dimensions. L was an arbi-
trary length scale value we introduced with which to con-
fine the wavefunction longitudinally. Therefore, for large
or small values L, the energy eigenvalue approximations
break down which is evident in Figures 2 and 3. Again, it
is interesting to note the trend of the ground state eigen-
values to tend towards negative infinity for increasing L.
Further study would involve numerically calculating po-
tential matrices of increasing dimension to see how this
trend develops. If the dependence on L for any eigenvalue
minimizes, that would be a good energy state to analyze

further in approximating the wavefunction for the light
front quantum harmonic oscillator in tilted coordinates.
Beyond applying tilted light front coordinates to the
quantum harmonic oscillator, it is necessary to test them
for multiple quantum mechanical systems to understand
their properties. Following this study of the quantum
harmonic oscillator, the application of tilted coordinates
to other potentials and boundary conditions will help il-
luminate their properties. Another system of interest is
applying tilted coordinates to a linear potential.

-17.1916 @ ) ) ) ) ) ) )

e 211723 o ) ) ) ) ) )

) @  26.6064 0 ) ) ) ) )

0 2] %} 27.3079 (2] 0 2] 2] 2]

) ) ) e 312571 @ ) ) e

) ) ) ) @  33.5688 o ) )

4] 2] [} [} (2] (4] 34.2141 2] 2]

) ) ) ) ) ) e  44.3899 @

) ) ) ) ) ) ) e  96.3621
FIG. 6. Diagonalized 9x9 Hamiltonian matrix with m =

1.7fm Y, w=25fm™! and L =7 * \/:m

V. SUMMARY

In summary, we make an attempt to analytically deter-
mine the wavefunction for the light front quantum har-
monic oscillator in tilted coordinates. Numerical meth-
ods prove necessary, so we solve for the wavefunction by
breaking the Hamiltonian operator into Hy and V. The
wavefunction for Hy is found analytically and modified to
account for V. The Hy and V matrices are constructed,
summed, and diagonalized for the four-by-four and nine-
by-nine potential matrix cases. The dependence on the
bounds of integration, -L to L, is discussed.
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