Signatures of functional responses to acute and chronic COVID-19 infections

Rhea M. Grover
University of California, Berkeley”
(Dated: August 2023)

Post-acute sequelae of COVID-19 (PASC), characterized by lingering symptoms of disease after
the acute COVID-19 infection has passed, affects anywhere from 31-69% of individuals infected with
COVID-19. It is unknown why some individuals develop PASC; we currently lack a quantitative
description of the differences between individuals with and without PASC. In this project, we ana-
lyzed TCR sequencing information from a group of individuals with and without PASC. We detected
TCR clonal expansion and contraction between time points during the infection and analyzed the
probability of a clone being shared between patients, with the goal of finding predictors of PASC
based on the dynamics of an individual’s immune repertoire.

I. INTRODUCTION

Post-acute sequelae of COVID-19 (PASC), is an
emerging problem following the recent SARS-CoV-2
pandemic. PASC is a complication of COVID-19,
the disease caused by SARS-CoV-2, which can have
severe and life changing effects on the lives of those
who experience it. Much is still unknown about the
causes of PASC; we do not know exactly how many
people have PASC, who will develop it after COVID-
19 infection, the mechanisms that lead to develop-
ment of PASC, or even all of the manifestations of
PASC.

In the future, we hope to be able to predict some-
one’s chance of developing PASC based on their
immune repertoire and other health markers. In
this project, we analyze TCR sequencing data from
a group of individuals infected with SARS-CoV-2,
with varying levels of disease severity and PASC
status and symptoms. By analyzing T cell reper-
toires, we hope to characterize the immune response
to acute and chronic COVID-19 to understand more
about PASC.

A. Post acute sequelae of COVID-19 (PASC)

Post acute sequelae of COVID-19 (PASC), com-
monly known as long COVID, is characterized by
lingering symptoms of illness for 4 or more weeks
after infection with SARS-CoV-2 [1]. Researchers
have identified over 200 symptoms associated with
PASC [2]. Symptoms include respiratory, gas-
trointestinal, and neurological difficulties, and anos-
mia/dysgeusia (loss/diminishment of smell/taste).
Anywhere from 31-69 % of individuals who are in-
fected with COVID-19 will go on to develop PASC.
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The reasons some individuals with COVID-19 go
on to develop PASC, and the mechanisms behind
PASC, are still not fully understood; with so many
people living with PASC after the recent pandemic
of COVID-19, understanding more about PASC is

an important research question.

B. T cells

T cells are part of the adaptive immune system,
and respond to pathogens to fight off infections.
They identify infected cells through the presenta-
tion of peptides (protein fragments) by major his-
tocompatibility complex (MHC) molecules. MHC
molecules on the surface of cells display peptides be-
ing produced in the cell to T cells, specifically their T
cell receptors (TCRs). If a TCR binds to the protein
fragment and the cell is understood to be infected
with a pathogen, the cell will either be destroyed
by the T cell or flagged for destruction. There are
several types of T cells, which serve various func-
tions. Killer (cytotoxtic) T cells destroy infected
cells. Helper T cells secrete signaling molecules that
aid in, among other functions, activating B cells, an-
other type of adaptive immune system cell which
neutralizes pathogens and secretes antibodies. Reg-
ulatory T cells prevent the immune system from re-
sponding incorrectly [3].

Each T cell displays a single kind of TCR and
is covered in thousands of them. TCRs have two
main components, the a chain and the (8 chain.
Each chain, and thus TCR, is produced as a result
of combinatorics and stochastic processes. TCRpS
chains are generated by V(D)J gene recombination
in which alleles of the V, D, and J genes are com-
bined and spliced together by deleting and inserting
nucleotides randomly between the V and D genes
and the D and J genes. [4]. The part of the chain
on which recombination occurs is called the CDR3
region. A TCR can be identified uniquely by its
V genes, J genes, and CDR3 nucleotide sequences.



A group of T cells with a particular TCR is called
a clone. It is estimated that V(D)J recombination
alone results in anywhere between 10 to 10%! dis-
tinct TCR clones [5].

Not all of the TCRs produced via recombination
will effectively detect cells harmful to the body, i.e.,
non-self. The body attempts to make sure that T
cells do not recognize the body’s own cells as non-
self, which would lead to autoimmune disease. T
cells must therefore go through a round of selec-
tion after recombination to ensure that only those
that detect infected cells make it into the body. A
current theory is that TCRs are tested against self-
antigen (proteins produced in the body) for binding
strength. TCRs that bind too weakly are unlikely
to effectively detect infected cells while those that
bind too strongly to self-antigen may mistakenly de-
tect healthy cells as non-self. Cells on either side of
this spectrum undergo apoptosis [3] However, recent
work has called this theory into question. Among
other observations, the timescale on which T cells
undergo selection—four to five days—is much too
small for them to be tested against all self-antigens.
Thus, selection is thought to be a leaky process, with
some autoreactive T cells passing through success-
fully. [6].

After all is said and done, 10'2 T cells survive
functional selection [5]. Due to sampling constraints,
it is unknown exactly how many distinct clonotypes
there are [7]; however, recent estimates have put the
number of distinct TCRs between 106 and 10% [4].

T cells which have passed selection are ready to
start recognizing and responding to infections. Once
a T cell has detected an infected its cognate antigen,
it becomes activated. The TCR sends a signal to the
nucleus of the T-cell, setting off a chemical cascade
which leads to TCRs on the surface clustering and
sending various signals based on the circumstance.
The activated T-cell then proliferates rapidly, ex-
panding its clonal population. After the infection
is gone, the clone population contracts, except for
some memory T cells which persist in the body and
are easier to activate if the pathogen is encountered
again [3].

C. About the data

This project used the INCOV cohort from the
study described in [8]. The data used for this
project was obtained from individuals infected with
COVID-19 at Swedish Medical Center in Seattle,
WA. This cohort contained 124 individuals who had
been tested for PASC, consisting of 63 individuals
without PASC (28 male and 35 female) and 61 with
PASC (24 male and 37 female). The participants
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FIG. 1. Heatmaps showing PASC symptoms experienced
by male and female individuals with PASC. Dark boxes
correspond to experiencing that symptom.

were aged between 19 and 86 years old at the time
of the study and had a wide variety of disease sever-
ities and preexisting conditions.

Blood samples were obtained at three time points
during the infection: baseline (BL), taken at time of
clinical diagnosis of COVID-19; acute (AC), taken
at the peak of infection; and convalescent (CV), 2-
3 months after first symptoms of disease [8]. The
distributions of these sampling times are shown in
Fig. 2.

Bulk TCR sequencing from collected blood sam-
ples was performed at Adaptive Biotechnologies in
Seattle, WA. The sequencing data gave us informa-
tion about the (8 chains of specific clones found in
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FIG. 2. Time each sample was taken. Most baseline
samples were taken 0-5 days after study enrollment, most
acute samples were taken 5-15 days after study enroll-
ment, and most convalescent samples were taken 22-100
days after study enrollment.

the sample, which included their CDR3 sequence,
their V-gene and J-gene, and the number of times
the clone appears in the sample (the read count).
On average, there were about 275,000 unique TCR
clones in each sample.

Individuals were tested for PASC symptoms dur-
ing the CV time point by looking for symptoms of
PASC that fell into four categories: respiratory, gas-
trointestinal, and neurological difficulties, and anos-
mia and dysgeusia. We considered an individual to
have PASC if they displayed at least one of these
four symptoms. A more detailed look at the PASC
symptoms experienced by individuals in this study
can be seen in Fig. 1. Of the 124 individuals tested
for PASC, some had samples taken at all three time
points; others only had samples from the AC and
CV time points. We only considered individuals who
had a sample from the CV time point. Samples were
taken from individuals experiencing a wide variety of
disease severity and with a wide range of preexisting
conditions.

More information about this data can be found in
8].

D. Goals

The goal of this project was to understand more
about the immune response of patients with COVID-
19. Using T cell repertoire data, we aimed to iden-
tify predictors of PASC from an individual’s im-
mune response. We aimed to describe clonal ex-
pansion and contraction between time points in our
data sequence features of the expanded and con-
tracted clones, and analysis of what phenomena
were shared between demographic groups, to iden-
tify which clones were responding to COVID-19. We
also looked at the immune responses in four groups,
females with PASC, females without PASC, males
with PASC, and males with PASC, to look for dif-
ferences associated with sex and PASC status, be-
cause there are differences in immune repertoires be-
tween females and males [9]. In doing these analyses,
we hoped to understand more about the individu-
als that went on to develop PASC after COVID-19
infection, in particular how their T-cell repertoires
differed from those individuals without PASC.

II. TCR POPULATION DYNAMICS
ANALYSIS

A. Read Counts and Undersampling

The sequencing data contains information about
the clone identities in each sample and the number of
times the clone was sequenced. So given one sample
from each time point, why not just compare the read
counts for each clonotype and see which ones are
larger or smaller? Indeed, PCA on the read count
trajectories (Fig. 3) shows many read counts get
much larger or smaller between time points; there is
quite a bit of fluctuation in read counts between sam-
ples. However, the process of identifying expanding
or contracting clone populations is not so simple.

There are about 102 T cells in the body [10], but
only 10° are sampled and sequenced. Clone popula-
tions follow a power law distribution, p(f) = Cf~2,
for some constant C (Fig. 4), which means many
clones have low frequency in the immune repertoire.
Because T cells are highly undersampled, there is a
lot of variation in clone reads between samples, un-
related to clonal expansion or contraction. Fig. 5
illustrates this variation.

This variation in read counts means that we must
distinguish between clones that have a higher or
lower read count due to experimental noise from
undersampling, and clones that have a higher or
lower read count because the clone population has
expanded or contracted. Dealing with this experi-
mental noise is a key challenge in clonal population
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FIG. 3. Trajectories of clone read counts for top 1000 most abundant clonotypes across all patients. Clustered into
groups showing roughly the same behavior over time using principal component analysis.
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dynamics analysis.

B. NoiskET

To detect clonal expansion and contraction, this
project used the NoisET software [11]. NoisET is
a Python package which uses Bayesian inference to
learn experimental noise and predict which clones
are most likely to have undergone expansion or con-
traction between two time points. NoisET does this
in two steps. First, NoisET learns the null (noise)
model from two biological replicates, modeling the
immune repertoire with one of three probability dis-
tributions chosen by the user. After learning null
model parameters, NoisET then performs the expan-
sion/contraction calculations. NoisET calculates a
p-value that the read counts for a particular clone at
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FIG. 5. Variation in read counts between two biologi-
cal replicates (samples taken at the same time from the
same person). Because the samples are taken at the
same time, clone populations have not expanded or con-
tracted; therefore, any variation in the number of reads
is due to noise.

each time point are due to experimental noise (i.e.,
that the clone population did not expand or con-
tract). The user then selects the significant p-values.
More information about NoisET can be found in
[11].

NoisET allows the user to choose between three
probability distributions to model the experimental
noise between two replicates: a Poisson distribution,
a negative binomial distribution, and a distribution
that combines the two and attempts to account for
the number of reads of a clone in a sample vs. the
actual number of the clone in the sample (m), since



one cell may contribute multiple reads to the data.
These distributions are as follows [11]:

P(n|f) = Pois(fNr)
for N, the total number of reads in the sample
P(ﬁ|f) = NegBin(ﬁ; Ny f,Np.f + a(Nrf)b)

for a and b parameters dictating the variance,
learned when calculating noise parameters

P(n|f) = Efno P(nlm;)P(m;|f)

where M is the number of T-cells in a sample (as
opposed to the number of reads), fM is the average
population of a clone with frequency f in a popu-
laton of M cells, P(m;|f) = NegBin(m;; fM, fM +
a(fM)%) and P(d|m;) = Pois(m;N,./M).

After NoisET has learned the parameters of the
experimental noise, it goes on to calculate which
clones are most likely to have expanded or con-
tracted given the null model. By modeling the fre-
quency of a clone at two points in time as f(t;) = f
and f(t2) = fe®, NoisET calculates the probability
of the observed read counts given the fraction of re-
sponding clones v and the average selection factor s
as follows [11]:

((Mi(t1) = ri1,1;(t2) = n2)|v, 8) =

P
/ / df p(f)dsP(s]y, 5) P(1ia| f) P(ria] fe?)

where P(n|f) are the noise distributions learned in
the earlier step, p(f) is the power-law frequency dis-
tribution, and P(s|v, bars is the prior on s. NoisET
then calculates the probability of seeing the observed
s given the two read counts at each time, using
Bayes’ Rule:

S P(riy,mz]s,v,5)P(s]v,
P(slrin, 1ig) = PO R0 B2
This results in a p-value for each clone which repre-
sents the probability that the clone population has
expanded or contracted, given the null model. The
user then chooses which p-values are significant.

C. Using NoisET on our data

One of the challenges in using NoisET on our
data came in the first step, learning the null model.
NoisET is designed to learn the null model from two
biological replicates. However, our data did not in-
clude biological replicates; we only had one sample
per time point for each individual. In order to learn

the null model, we turned to subsampling. We ini-
tially started with hypergeometric sampling based
on the number of reads of each clone, with 20,000
reads total in each in silico replicate. However, we
realized that this was too small a sample to obtain
adequate results, as these ”replicates” did not con-
tain clone populations as small as would be seen in
an actual sample.

We also considered using unproductive sequences
to train the noise model. Unproductive sequences
are those sequences that do not produce a functional
TCR. This usually occurs because the sequences are
out of frame for transcription or because they con-
tain a premature stop codon. These sequences are
found in cells that have functional TCRs, because
the unproductive sequence is encoded by one chro-
mosome and the productive sequence is encoded by
the other. [4]. We knew that unproductive se-
quences travel with productive sequences, but we
thought we might try using them to train on noise,
since they do not generate functional TCRs that
would respond to infection. However, after further
analysis, in which we performed PCA on the popula-
tion trajectories over time for both productive and
unproductive sequences, we found that the behav-
ior of the unproductive sequences was too similar to
that of productive sequences, reflecting the fact that
they “hitchhike” along with productive sequences,
which expand and contract in response to disease.

After considering these two ideas, we turned to
the idea of data thinning [12, 13]. Data thinning is
a method to separate a random variable X into mul-
tiple random variables follow the same distribution
as the original follow the same distribution as the
larger sample.

By treating each clone read count as a random
variable X, we sampled without replacement to ob-
tain two ”replicates” which summed to the original

[14]:
XM L x@ = x

We chose to use this method for creating in sil-
ico replicates over other methods for several reasons.
First, the larger sample included clone counts with
low frequencies, which were left in our earlier method
of only sampling 20,000 reads. Second, this method
ensured that the smaller samples followed the same
clone frequency distribution as the original. Third,
the number of significant clonal expansions and con-
tractions detected with this method were closer to
what we would expect to see, compared to the ear-
lier subsampling method, which detected many more
expansions and contractions than expected.

After developing our data thinning technique, we
had to choose which noise model to use to describe
our data. Unfortunately, we were not able to per-



form the calculations for the mixed negative bino-
mial/Poisson model because the program took too
long; we then focused our attention on the other two
models. We selected a random sample of individu-
als from each of four groups based on the individ-
ual’s sex and PASC status; we then produced 100
sets of in silico replicates and calculated the Pois-
son and negative binomial noise parameters for each
sample. We found that parameters for both noise
models across each of the 100 sets of replicates were
generally quite similar. Because the likelihood val-
ues and parameters between the two models were
similar, we then looked at how the parameters af-
fected the calculation of the number of expansions
and contractions. For one patient from the four
groups, I calculated the p-values of expansion and
contraction for each of the clones for each of the 100
parameters, between the BL and AC timepoints, for
each noise model. We considered a clone to have
significantly expanded or contracted if it had a p-
value j 0.05. We found that the negative binomial
noise model was more sensitive to the parameters
than the Poisson noise model; there was far more
variation in the numbers of significant clonal expan-
sions/contractions detected and in which clones were
detected. There were patients for which no one clone
appeared in all 100 sets of calculations. This was
in contrast to the Poisson model parameters, which
consistently detected the same number or a close
number of significant contractions and expansions,
and detected the same clones in most, if not all, 100
calculations (Fig. 6). We think this consistency may
be because of our data thinning method, which may
be more consistent with a Poisson distribution than
a negative binomial one. Because of the consistency
of the detections with the Poisson noise parameters,
we chose to use the Poisson noise model for the rest
of of our calculations.

D. Final Algorithm

After refining our in silico replicate procedure and
choosing a noise model, we settled on a final proce-
dure for detecting expansions and contractions, as
follows:

1. Performed data thinning 100 times to obtain
100 sets of in silico replicates for each sample.

2. Calculated 100 sets of noise parameters for
each set of replicates.

3. With each of the 100 sets of noise parameters,
detected expansions and contractions between
two time points.

Negative Binomial Noise Model Poisson Noise Model

s
# of clones

0 20 40 60 80 5 9% 97 98

9 100 101
# of times appearing as significant nificant

# of times appearing as signific:

FIG. 6. Clonal expansions and contractions detected
with the Poisson noise parameters were more consistent
across all 100 sets of in-silico replicates than those de-
tected with negative binomial noise parameters. For this
particular individual, no clonotype was detected as con-
tracted or expanding in all 100 calculations; however, all
100 calculations using Poisson noise parameters detected
the same clones.

clone frequency AC

T 1o o
clone frequency BL

FIG. 7. Example of detection of expanding and con-
tracting clone populations for one individual between the
baseline and acute time points.

4. Intersected the set of significant clones ob-
tained from each the 100 sets of noise param-
eters; considered clones to have significantly
expanded or contracted only if they were in
this set intersection.

We chose to perform data thinning 100 times to
increase confidence in the results, as sampling is a
random process. We then chose to intersect all 100
sets of results for the same reason, and as a correc-
tion for multiple testing.

E. Results

We ran our algorithm between the BL and AC
time points and AC and CV time points for each
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FIG. 8. Number of contractions and expansions detected
between time points per demographic group

individual who had samples from those time points
(see Fig. 7 for an example). The number of sig-
nificant expansions and contractions found between
time points for each group of individuals is depicted
in Fig. 8. While each of the boxplots has significant
overlap with the others, a couple of features stand
out: the variance in clonal expansions and contrac-
tions in males with PASC is higher at all times, and
the median for that group is also higher than for any
of the other groups.

While the numbers of expansions and contractions
do not conclusively suggest differences between the
groups, the detection of expansion and contraction
gives us information that we can continue to use to
characterize immune response to COVID-19.

III. CLONE SHARING AND P,.s: ANALYSIS

Every TCR has a probability of occurring in the
body, which relates to the probability of being pro-

duced through V(D)J recombination and surviving
functional and self-antigen testing. In analyzing the
probability of a clone occurring in the body, we can
find those clones that have a rare chance of occur-
ring, but also occur in many individuals in our data.
There are a few reasons that clones might be found in
multiple individuals. The first is convergent recom-
bination; since all human produce clones through
V(D)J recombination, which has specific biases, cer-
tain clones are more likely to be found in many peo-
ple [15]. Other reasons for clone sharing include ex-
perimental biases from the sequencing method, and
similar exposure histories; if multiple individuals
have been exposed to a certain pathogen, they will
have a larger population of responding clones than
those who have not been exposed to the pathogen.
Therefore, clone sharing, particularly of rare clones,
is an indication that those clones could be respond-
ing to infection [16].

To look for these rare clones, we used two soft-
wares. V(D)J recombination is modeled by the soft-
ware IGoR [17], which predicts the probability of
generation via V(D)J recombination, Pye,. The se-
lection process occurring after V(D)J recombination
is modeled by the software SONIA [18], which pre-
dicts the probability of surviving selection, Ppos¢-

A. Results

Before analyzing any probabilities, we first looked
at the numbers of clones shared between individuals
in each of our four demographic groups (Fig. 9 (a)).
We combined samples from all three time points
and only looked at productive sequences. Here we
found a curious result. The distributions of number
of clones shared between certain numbers of indi-
viduals is largely the same between the two groups
of female patients (the drop off in the group with
PASC can be attributed to the smaller sample size.
However, the males without PASC had more shar-
ing than the males with PASC, at all points in the
distribution. Male patients also showed less shar-
ing than female patients; however, prior research
has shown that males tend to have more sharing
than females as a result of producing a reduced di-
versity of TCRs compared to female individuals— in
other words, clones in male individuals tend to have
a higher Ppog than those in female patients [9]. The
result in our data does not track with this finding.
However, more work must be done to examine how
much of our result is due to sample sizes.

After looking at the numbers of clones shared, we
looked at the distributions of P for the clones in
each group Fig. 10. There were not significant dif-
ferences in the P, distributions between groups.



Female, False
0.20 Female, True
—— Male, False
—— Male, True

common
receptors

logio counts

T T T O S S S S TSI N ST ST S Y 0.00

T Female wjo PASC (N = 35)
Female w/ PASC (N = 37) 01s |

1 Male wjo PASC (N = 28)
1 Male w/ PASC (N =24) ]

&
2010

rare receptors

0.05 /

Number of patients

T R R S R N
3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

-30 -25 -20 -15 -10 -5 )
10910 (Ppost)

FIG. 9. (a) Distribution of clones shared between individuals in each demographic group. (b) Distribution of Ppost for
patients in each of four demographic groups. False indicates a individual without PASC; True indicates an individual
with PASC. We are particularly interested in the rare receptors highlighted in the figure.

Female, w/o PASC

Male, w/o PASC

'S I I I A I B B I B N TN R I I B R N P
-20 s -20 I
H
30 -30
scaled count scaled count
- s
3 40 -40
Q_S 0 5 10 15 20 25 30 0 5 10 15 20 25
< Female, w/ PASC Male w/ PASC
S | 4 s 8 8 s 8 8 8 8 & 2 8 8 8 2+ B 8 8 8 . 2 8 8 8 8 8 8 8 8 3 8 & 2 o o
gim Iii irﬂi”iw;,,;,,i,,;,;,,;,,;,,;,,,;,,;,,;w;m;,;ﬂ;ﬂ:r—r——rrr—r PR o ' i ! ii i I B YN T YN TN T O YUY OO Y W
20 : -20
_30 -30
; scaled count scaled count
_a0 -40
0 5 10 15 20 25 30 35 1 3 5 7 9 11 13 15 17

Number of individuals

FIG. 10. Distribution of Pposts of clones shared by number of individuals in each group

We then plotted the P distributions for clones
appearing in a certain number of patients. We cal-
culated the probability of seeing a clone in a sample
of N clones as follows:

p(03N) =1 — (1 = Ppogi(0))N =1 — eNProose

The distribution of P, expected to see for clones
seen in m individuals, out of a cohort of M with
sample size N is a binomial distribution as follows:

Pshare(g; m, M7 N) = (M) [p(0-7 N)]m[l - p(O’, N)]M_m

m

[16]. We chose the 0.05 quantile of clones as a
cutoff, i.e., the rarest 5% of clones shared between
each number of people. The clones below the this
bound (the red line in Fig 11) are those clones that
could be responding to disease; more work is needed
to identify those clone sequences and connect them
to our population dynamics analysis to see if they
could be expanding or contracting as a response to
infection.

IV. CONCLUSION AND FUTURE
OUTLOOK

This project laid important groundwork towards
our goal of characterizing the immune response to
COVID-19 and PASC. First, we developed a data
thinning method to perform population dynamics
analysis in the absence of biological replicates. This
method will allow that analysis to be performed on
a wider array of datasets than previously possible.
Second, this project identified expanding and con-
tracting clones in all individuals in our study be-
tween all three time points. Third, we identified
rare, shared clones. These identifications are an im-
portant first step in analyzing the characteristics of
the immune repertoires in our cohort, and eventually
towards identifying clones responding to COVID-19.

In the future, we will continue to refine our data
thinning method to create in silico replicates which
resemble biological replicates as closely as possible.
This will involve testing analyses done with the in
silico procedure against analyses done with biologi-
cal replicate data. Additionally, we will test various



sampling methods to determine which is most suit-
able for our data and its underlying clone population
distribution.

More work is needed to identify which clones may
be responding to infection with SARS-CoV-2. This
will involve comparing which clones appear in mul-
tiple patients and at what time points. We will also
examine clones that have expanded or contracted
and have a low P,os. Furthermore, we plan to do
a network analysis with ALICE [19] on clone amino
acid sequences to identify responding clones.

Additionally, we plan to integrate electronic
health records into our analysis. These records in-
clude information about the symptoms and severity

of COVID-19 experienced by the individuals in our
study, any preexisting conditions, and other health
markers. We plan to look for associations between
that information and immune response.
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