Neutron Star Equations of State

Anousha Greiveldinger Mentor: Dr. Sanjay Reddy

How do they form?

What holds up the collapsed core?

What is a neutron star's structure?

Why do we study neutron stars?

Why now?

Building a neutron star

• Structure equations:

• Initial conditions:

• Relationship between pressure and density:

• Structure equations:

$$\frac{dp}{dr} = -\frac{G\epsilon(r)\mathcal{M}(r)}{c^2r^2} \left[1 + \frac{p(r)}{\epsilon(r)} \right] \left[1 + \frac{4\pi r^3 p(r)}{\mathcal{M}(r)c^2} \right] \left[1 - \frac{2G\mathcal{M}(r)}{c^2r} \right]^{-1}$$

$$\frac{d\mathcal{M}}{dr} = 4\pi r^2 \rho(r) = \frac{4\pi r^2 \epsilon(r)}{c^2}$$

• Initial conditions:

• Relationship between pressure and density:

• Structure equations:

$$\frac{dp}{dr} = -\frac{G\epsilon(r)\mathcal{M}(r)}{c^2r^2} \left[1 + \frac{p(r)}{\epsilon(r)} \right] \left[1 + \frac{4\pi r^3 p(r)}{\mathcal{M}(r)c^2} \right] \left[1 - \frac{2G\mathcal{M}(r)}{c^2r} \right]^{-1}$$

$$\frac{d\mathcal{M}}{dr} = 4\pi r^2 \rho(r) = \frac{4\pi r^2 \epsilon(r)}{c^2}$$

• Initial conditions:

$$M(r_0) = 0 \qquad p(r_0) = p_0$$

• Relationship between pressure and density:

• Structure equations:

$$\frac{dp}{dr} = -\frac{G\epsilon(r)\mathcal{M}(r)}{c^2r^2} \left[1 + \frac{p(r)}{\epsilon(r)} \right] \left[1 + \frac{4\pi r^3 p(r)}{\mathcal{M}(r)c^2} \right] \left[1 - \frac{2G\mathcal{M}(r)}{c^2r} \right]^{-1}$$

$$\frac{d\mathcal{M}}{dr} = 4\pi r^2 \rho(r) = \frac{4\pi r^2 \epsilon(r)}{c^2}$$

• Initial conditions:

$$M(r_0) = 0 \qquad p(r_0) = p_0$$

Relationship between pressure and density:

Equation of state (EoS)

What is considered when constructing an EoS?

- Proton and electron contributions
- Nucleon-nucleon interactions
 - Effective field theories
 - Nuclei surface tensions
- Coulomb interactions
- Speed of sound
- Different behavior in different sections of the NS

Equation of State

How important is the outer core EOS for the maximum mass of neutron stars?

Fancy neutron star model

Fancy neutron star model

Can we use a simple fit of any high density EOS

to extract the mass?

Using a simple, linear fit

Resulting mass-radius plot

Using the crust and then a linear fit

Resulting mass-radius plot

The crust doesn't make a huge difference

Coming back to this equation of state

Mass-radius plots varying slope and pressure

How the radius at 1.4 M_o changes

How the maximum mass changes

Conclusion

We can extract information from our simplified EoS!

Conclusion

We can extract information from our simplified EoS!

- For the radius at the Chandrasekhar limit, p₁
 has a large effect, m has a minor effect
- For the maximum mass, p₁ has a small effect and m has a large effect

Acknowledgements

Thanks to:

- Sanjay Reddy
- The INT
- The NSF
- All of you!

Questions?

 $\epsilon_{\rm elec}(k_F) = \frac{8\pi}{(2\pi\hbar)^3} \int_0^{\kappa_F} (k^2c^2 + m_e^2c^4)^{1/2}k^2dk$

 $= \epsilon_0 \int_{\hat{a}}^{k_F/m_e c} (u^2 + 1)^{1/2} u^2 du$

 $p = -\frac{\partial U}{\partial V}\Big|_{T=0} = n^2 \frac{a(\epsilon/n)}{dn} = n \frac{a\epsilon}{dn} - \epsilon = n\mu - \epsilon$

 $= \frac{\epsilon_0}{9} \left[(2x^3 + x)(1 + x^2)^{1/2} - \sinh^{-1}(x) \right]$

 $\epsilon = nm_N A/Z + \epsilon_{\rm elec}(k_F)$

 $p(k_F) = \frac{8\pi}{3(2\pi\hbar)^3} \int_0^{\kappa_F} (k^2c^2 + m_e^2c^4)^{-1/2}k^4dk$

 $=\frac{\epsilon_0}{2}\int_0^{k_F/m_ec}(u^2+1)^{-1/2}u^4du$

 $=\frac{\epsilon_0}{24}\left[(2x^3-3x)(1+x^2)^{1/2}+3\sinh^{-1}(x)\right]$

$$pprox ~K_{
m rel} \, \epsilon^{4/3} \, ,$$
 $K_{
m rel} = rac{\hbar c}{12\pi^2} \left(rac{3\pi^2 Z}{Am_N c^2}
ight)^{4/3} \, .$

 $p(k_F) = \frac{\epsilon_0}{3} \int_0^{k_F/m_e c} u^3 du = \frac{\epsilon_0}{12} (k_F/m_e c)^4 = \frac{\hbar c}{12\pi^2} \left(\frac{3\pi^2 Z \rho}{m_{N} A}\right)^{4/3}$

 $\bar{\epsilon}(\bar{p}) = A_{\rm NR}\bar{p}^{3/5} + A_{\rm R}\bar{p}^{3/4}$

$$p = K_{\text{non-rel}} \epsilon^{5/3}$$
, where $K_{\text{non-rel}} = \frac{\hbar^2}{15\pi^2 m_e} \left(\frac{3\pi^2 Z}{Am_N c^2}\right)^{5/3}$

$$p(n) = n^2 \frac{d}{dn} \left(\frac{\epsilon}{n}\right) = n_0 \left[\frac{2}{3} \left\langle E_F^0 \right\rangle u^{5/3} + \frac{A}{2} u^2 + \frac{B\sigma}{\sigma + 1} u^{\sigma + 1}\right]$$

$$= p(n,0) + n_0 \alpha^2 \left[\frac{2^{2/3} - 1}{5} \left\langle E_F^0 \right\rangle \left(2u^{5/3} - 3u^2 \right) + S_0 u^2 \right]$$
 $V_{\mathrm{Nuc}}(u,0) = \frac{A}{2}u + \frac{B}{\sigma + 1} \frac{u^{\sigma}}{1 + Cu^{\sigma - 1}}$

 $p(n,x) = u \frac{d}{du} \epsilon(n,\alpha) - \epsilon(n,\alpha)$

$$=n\left\langle E_{F}
ight
angle \left\{ 2^{2/3}\left[\left(1-x
ight)^{5/3}+x^{5/3}
ight]-1
ight\} .$$
 $E(n,lpha)=E(n,0)+lpha^{2}S(n)$ $S(u)=(2^{2/3}-1)rac{3}{5}\left\langle E_{F}^{0}
ight
angle \left(u^{2/3}-F(u)
ight)+S_{0}F(u)$.

 $\langle E_F \rangle = \frac{3}{5} \frac{\hbar^2}{2m_N} \left(\frac{3\pi^2 n}{2} \right)^{2/3}$

 $= n \langle E_F \rangle \left\{ \frac{1}{2} \left[(1+\alpha)^{5/3} + (1-\alpha)^{5/3} \right] - 1 \right\}$

 $\Delta \epsilon_{KE}(n,\alpha) = \epsilon_{KE}(n,\alpha) - \epsilon_{KE}(n,0)$