A Minimal Equation of State for Neutron Stars

Anousha Greiveldinger
Department of Physics and Astronomy, University of Notre Dame

Sanjay Reddy
Institute of Nuclear Theory, University of Washington
(Dated: August 18, 2023)

We construct the minimal equation of state that can account for the key features of the mass-
radius curve for typical neutron stars in the mass range 1.3 — 2 Mg where My = 1.98 x 10% g is
the mass of the sun. We identify the correlation between neutron star masses and radii and the
parameters of the simplified EoS. The minimal EoS consists of a realistic model of the crust, and
two distinct linear segments characterized by a constant speed of sound. The first segment describes
the EoS at intermediate density and is characterized by the pressure at baryon density np =~ 2 ngat
where nga: ~ 0.16 fm 2 is the nuclear saturation density. The slope of the second segment is varied
over the range allowed by the principle of causality, which requires the speed of sound to be less
than the speed of light, and the condition that the EOS produces massive neutron stars with a mass
> 2Mg. This simplified EOS can reproduce the key feature of the neutron mass-radius relation, and
we find that the radius at 1.4 M is sensitive to pressure at np =~ 2ns,¢ but relatively insensitive to
the speed of sound. The maximum mass was sensitive to the energy density at which the pressure

increases rapidly and the high-density speed of sound.

I. INTRODUCTION

When a massive star reaches the end of its life, its iron
core implodes and triggers a supernova explosion [10].
This can leave behind the initial mass of the neutron
star (NS). The entire NS is roughly the density of the
nucleus of an atom (10'* g/ecm?), while matter that is
normally interacted with on an every-day basis is on the
order of 1 g/em3. At this nuclear density, protons and
electrons are close enough that 8% decay occurs often,
resulting in neutron-rich matter. When the neutrons are
so dense, their wave functions overlap. Since neutrons are
fermions, they obey the Pauli exculsion principle which
states that there can only be one neutron per quantum
state. Neutrons can have spin up and spin down, meaning
there can be two neutrons per energy state. Since NSs
are cold objects, their thermal energy is negligible, so the
Pauli exclusion principle has a large effect on the energy
of the system. The neutrons are forced into high energy
states, causing an outward pressure, called degeneracy
pressure, that counteracts gravity.

As neutrons reach higher and higher energy levels, it
can be more energetically favorable for them to decay:
n — p+ e + v, so not all protons and electrons are
crushed into neutrons during the core collapse. In a NS,
the rates of neutron decay and electron capture occur at
equal rates, meaning the star is in chemical equilibrium.
Deeper in a NS, other particles, like muons, can stably
exist because their rest mass energies are lower than the
Fermi energy of the neutrons. [7]

Currently, the accepted structure for the interior of a
NS is divided into 5 sections: the outer crust, the neutron
drip line, the inner crust, the outer core, and the inner
core. The outer crust is a few hundred meters thick with
densities of 10* — 10''g em™3, and is made of neutron-
rich nuclei surrounded by a gas of free electrons. The

neutron drip line is the point when neutrons are no longer
bound to the nucleus. The inner crust, also called the free
neutron regime has densities of 10! — 10**g ecm=3. The
outer core is a liquid of mainly neutrons but has some
electrons, protons, and muons. The structure of the inner
core is unknown, but the presence of hyperonic matter
(matter made of strange quarks) has been theorized.

Their interior structure cannot currently be directly
measured. Instead, relationships between density and
pressure, called equations of state (EoS), are created us-
ing what is known about how matter interacts. An EoS,
along with the structure equations (3 and 5), is used to
create a model of a NS. The results of the models are com-
pared to observations of the masses and radii of known
NSs.

II. THE STRUCTURE EQUATIONS

Using purely Newtonian mechanics, the structure
equations can be derived, providing a starting point for
creating an EoS. To begin deriving the structure equa-
tions, take a box with cross-sectional area A and thick-
ness dr. The pressure on the bottom face is p(r) =
F(r)/A, while the pressure on the top face is p(r +dr) =
F(r+dr)/A. The force due to gravity is

GMm. (1)
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Combining these equations with Einstein’s £ = mc?, the
following equations are derived:
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M(r) = 4x /OT 2dr p(r') = 4m -/OT 2dr'e(r’)/c? (4)

Here, M (r) is the mass contained within a given ra-
dius. p is the mass density and e is the energy density.
The switch from p to € is important because it allows
energy from particle interactions to be accounted for. €
and p have the same units: ergs/cm?. Equations 2 and
3 can be solved by integrating from r = 0 to a maximum
value, R, where the pressure reaches 0. This system re-
quires two initial conditions: pressure, pg, when r = 0
and M (0) = 0. The Newtonian equations work for mod-
eling some stars, like small white dwarfs, but relativis-
tic corrections are required to appropriately model NSs.
Adding relativistic corrections to Equation 2 results in
the Tolman-Oppenheimer-Volkov (TOV) equation [8][9].
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The first two additional terms are special relativity cor-
rections and the third term is a general relativity cor-
rection. All of these corrections are greater than 1,
seeming to “increase” the effect of gravity, resulting in
smaller maximum masses and radii that can be achieved.
Substituting in dimensionless quantities makes computa-
tion significantly easier. To do so, we define M = #@,
R:R%WhereRo:G@#,E:éwherees:%,
and p = Eﬁ Substituting these dimensionless variables
into equations 3 and 5 gives

i

r 3r%e (6)

and

| e e

7

If the system of equations is being solved with a differ-
ential equation solver, the second term in brackets will
pose a problem with division by 0 because the mass con-
tained within the starting radius is 0. To address this, the
mass term can be expanded to (4/3)773p. When working
in Python, the differential equations were instead solved
manually.

III. SOLVING THE COUPLED ODES

These differential equations cannot be solved analyt-
ically and instead must be done numerically. To find
the maximum mass and radius for a given pressure, the
differential equation is solved out to farther and farther
radii until the pressure becomes negative. The last ra-
dius is then recorded and that value is passed into the
mass equation to get the total mass of the star. This

process can be repeated with several initial pressures to
generate a mass-radius curve for a given EOS. Multiple
approaches can be used to generate these curves.

A. Mathematica

To solve the differential equation for a given starting
pressure, use a “Do” loop. This loop will iterate on the
variable rf, the end point that the differential equation
solver will go to. It is set to range from lkm to 40km
in 100m increments. When working with Mathematica,
an equation very similar to 7 was used, but the radius
was not dimensionless; it was kept in kilometers. The
“Check” is in place because NDSolve was reaching the
maximum number of steps (which was set to 20,000).
This caused the loop to not recognize that the pressure
had gone negative because the exception was returned, so
the returned radius of the NS was larger than it should’ve
been. A sample of the code is included below. pReal
and mReal can both be plotted versus r to see how pres-
sure and mass change throughout a star. To generate a
mass-radius plot, another “Do” loop is needed to iterate
through multiple values of central pressure, in this case
represented by pbarOR.

Do [Check [
solution =
NDSolve [{pbar’ [x] == rhsGR[x],
mbar’ [x] == rhs2[x],
pbar[r0] == pbarOR,
mbar [rO0] == 0}, {pbar, mbar},
{x, r0, 40}, MaxSteps -> 20000],
Break[], NDSolve: :mxst];
pReal = pbar /. First[fullsol];
mReal = mbar /. First[fullsoll];
test = Rel[pReall[rf]];
If[test < 0, Break[],
{rMax = rf, mMax = Re[mReall[rfl]}],
{rf, 1, 40,0.1}]

When Equation 7 is solved, the second term in paren-
theses causes problems for NDSolve due to division by
0 when the radius is 0. To address this, the mass term
must be expanded at very small radii.

dmr3e
M~ —— 8
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B. Python

Scipy does have a differential equation solver, but it
struggled with the small numbers that were necessary to
solve these ODEs. Instead, a while loop was used, and
the equations were manually stepped through. Each dif-
ferential equation was defined as a function, and the pa-
rameters were stepped through, increasing R by dr each
step. The end values of R and M were then added to a
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FIG. 1. A simplified drawing of regions of an EoS. The error
bars at the end of each section show how well understood that
segment of the EoS is. At extreme densities, the EoS becomes
well known again because it can be calculated using quantum
chromodynamics (QCD).

list. This loop was nested inside another while loop that
iterated through a range of pressures, allowing a mass-
radius curve to be plotted.

while P>0 and R<40:
R += dr
M += dmdr(P,R) * dr
P += dpdr(P,M,R) * dr

IV. CONSTRUCTING AN EOS

A simplified model of an EoS can be constructed using
three distinct sections, as shown in Figure 1. At low en-
ergy densities, below nuclear saturation energy density,
about 150 MeV /fm?, the pressure changes almost neg-
ligibly. This portion of the equation of state describes
the behavior in the crust of a neutron star and is well
known. The second section of this equation of state de-
scribes the NS at intermediate density, and is less well
known. This is characterized by the pressure at baryon
density np ~ 2nq: where ng ~ 0.16fm~3. The pres-
sure in the outer core region is thought to be around 20
MeV /fm3 [3]. This corresponds to an energy density of
around 300 MeV/fm3. The third segment of the EoS is
not well known, so there are many different theories used
to represent this section.

There are many approaches to constructing an EoS.
One of the simplest is to treat a NS as a Fermi gas of
neutrons. In this model, each energy level can only be
occupied by two neutrons, one with spin —&—%, and one

with spin —2.

5. At the non-relativistic and relativistic
approximations, this model can be approximated as a
polytrope, p = ke, where v is 5/3 and 4/3 respectively
[7][6]. When v = 4/3, the maximum mass is independent
of central pressure. To create an EoS for an arbitrarily
relativistic Fermi gas, a linear combination of both poly-
tropes can be used.

The Fermi gas model can then be improved by adjust-

ing to account for the presence of protons and neutrons.

This is necessary because free neutrons are not stable.
Instead, it is energetically favorable for them to decay.
If there are some protons present in the NS, they will
also obey the Pauli exclusion principle, and if they reach
a high enough energy level, the neutron will not decay.
This shrinks the maximum mass that a NS can reach.
The model can further be improved by including nuclear
interactions. The total energy per particle can be written
as

E = (n.a) = E(n,0) + a?S(n) 9)

where a = 25Z and S(u) is defined as

S(u) = (223 - 1)% (E%) (u*? — F(u)) + SoF(u). (10)

Another improvement to this EoS can be made by ensur-
ing that causality is satisfied by respecting the conditions
set in Equation V. More detail on this process can be
found in the paper by Silbar and Reddy [7].

Another approach to constructing an EoS is creating
a piecewise function to model the behavior of matter in
different sections of the NS. One example of this is done
by Macher and Schaffner-Bielich [4]. They use four parts
for their EoS: crust, a hadronic phase for the outer core,
a mixed phase of both hadronic and deconfined quark
matter, and finally pure quark matter. For the crust,
they use the BPS [2] and NV[5] EoS. For their hadronic
phase, they used a polytropic EoS, and for the final two
phases, they used linear EoSs.

One of the EoS models for a NS is a piecewise func-
tion using the BPS-NV [2][5] model for the crust and the
APR [1] model for the core of the star. The EoS and
resulting mass-radius plot using these models are shown
in Figure 3. We hoped to use our simple linear fit EoS to
extract the mass of a NS matching the results given by
the complex EoS.

V. LINEAR EOS

In all EoS models, there is a period where pressure in-
creases slowly as a function of energy density, then after a
point, €g, the pressure begins increasing rapidly. We are
considering this point to be around nuclear saturation
energy denisty, 150 MeV. A linear EoS is the simplest
EoS that can be used to model this. When p « €, the
pressure only monotonically approaches 0, but never be-
comes negative, resulting in an infinite radius for a NS
with any given central pressure. If the EoS is of the form

_J 0 ife<e
p_{cf ifezeo}’ (1)
the pressure will become negative if ¢y > 0, allowing

a mass-radius plot to be created, as shown in Figure 2.
The slope of this segment is constrained by the principle
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FIG. 2. Left: A mass-radius plot of a linear EoS where ¢2 =
0.09 and ¢y = 200 MeV. Right: A plot of the EoS, showing
that the x-intercept and slope match the constants that it was
assigned.

2000

1750

1500

1250

3)

<

Pressure (MeV/fm
15
8
8

o
S

500

0 250 500 750 1000 1250 1500 1750 2000
Energy Density (MeV/fm~3)

2.0+

1.5+

Mass (solar masses)

0.5 A

10 12 14 16 18 20
Radius (km)

FIG. 3. Mass-radius curves generated using a linear EoS. The
slope, ¢2, is held constant at 0.3. The x-intercept, eg, is varied,
and its values are displayed in the legend.

of causality. This requires the speed of sound to be less
than the speed of light, following the relation

O o
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A. Pure Linear EoS

Using the pure linear EoS described in Section V, we
analyzed how the maximum mass and radius at 1.4 Mg
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FIG. 4. Mass-radius curves generated using a linear EoS.
Top: The x-intercept, €o, is held constant at 200 MeV. The
slope, ¢2, is varied, and the values of ¢, are displayed in the
legend. Bottom: The slope is held constant at 0.61. The x-
intercept, is varied, and its values are displayed in the legend.

changed as ¢ and ¢; were altered. The general trend can
be seen in Figure 4. When ¢ is increased, both the mass
and radius decrease. When ¢? is increased, the mass and
radius increase. These patterns were investigated more
thoroughly by creating “iso-¢” curves for both M and
Ri.am,- These curves were constructed by holding ci
constant and changing €y, then fitting a line to all the
points. This process was repeated for multiple values of
2.

To fit the curves for maximum mass, we used a line
with the form

M =aB™1/2 (13)

as shown in Figure 5. As ¢, increased, so did the fit value
of a. Fitting the curves for radius followed a slightly
different procedure. To get the radius at 1.4 Mg, either
interpolation or the point nearest to 1.4 Mg can be used.
If the second method is used, it is important to get the
largest radius allowed at 1.4 Mg because there can be
multiple radii for one mass and it is important to make
sure the maximum mass > 1.4 Mg. The curves for the
radius are shown in Figure 6. They were fit with an
equation of the form

R=aB Y3 +4d. (14)
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FIG. 5. The “iso-¢” curves for the maximum mass. Each
curve is fit using an equation proportional to 1/31/2. The
resulting fit parameters and the value of ¢s are shown in the
legend.
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FIG. 6. The “iso-c” curves for the radius at 1.4 Mg. Each
curve is fit using an equation of the form 1/Bl/3 + f. The
resulting fit parameters and the value of ¢s are shown in the
legend.

These fits allowed us to figure out what the maximum
mass and R;.4Mg would be for any value of ¢y for a
given value of c¢; once we had one value. We wanted
to be able to predict the mass and radius just given €g
and ¢, without an additional data point. To do this, we
attempted to create fits of the fit constants.

There was no obvious function to use to fit the fit con-
stants for the mass “iso-¢” curves. For both the fit con-
stants in Equation 14, we used a fit of the form

const = c% + f. (15)
S

The error in these fits is due to the issues with calculating

Ri.4n, discussed above.

The mass-radius plots generated by the pure linear EoS
did not match the high density part of Figure 3 well; it
was only able to be a good approximation around one
point, so we had to choose if we wanted it to match the
maximum mass or R4 -

.
50 .
.
.
404
.
.
30 ‘
© .
20 .
.
104 °
.
.
04 ¢
0.0 0.2 0.4 0.6 0.8 1.0
2

FIG. 7. A plot of the a values used in the fits for the mass “iso-
¢” curves. At small ¢? values, there is non-linear behavior, but
around ¢ = 0.4, the points look nearly linear.
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FIG. 8. Left: A plot of the a values used in the fits for the
radius “iso-¢” curves. Right: A plot of the d values used in
the fits for the radius “iso-c¢” curves.

B. Linear EoS with Crust

To have a better fit while still keeping the EoS sim-
ple, we added the crust EoS from BPS-NV [2][5]. This
meant that for pressures up to 3.63172009e — 7M¢, /km?,
or around 0.405 MeV/fm3, the pressure is non-zero and
slowly increasing. This switched the tail from the left
to the right, giving a similar shape to the mass-radius
curve in Figure 3. Figure 9 shows that adding in the
crust does not make a large difference at high central
pressures, which aligns with what we expect. At very
low central pressures, there is a large difference between
the equations of state, and that also aligns with our ex-
pectations because that is where the equations of state
differ.

C. Piecewise Linear EoS with Crust

Neither of these models matched what is known about
the equation of state very well. Looking back at Figure
1, it makes more sense to use the crust and two diatinct
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FIG. 9. A comparison of the mass-radius plot with and with-
out the crust included in the EoS. Without the crust, the tail
goes to the left, while with the crust, the tail goes to the right.
At high densities, close to the maximum mass, the two curves
are very similar.
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FIG. 10. The mass-radius plots of the EoS model compared
to the mass-radius plot creating using the BPS-NV and APR
EoSs. Each group has the same slope; those with lower max-
imum masses have a slope of 1/3, while the other group has
a slope of 1.

linear segments. The parameters we used for the model
were changing the pressure at ¢; (300 MeV/fm?) and the
slope after that point. Changing these two parameters al-
lowed us to investigate how sensitive the maximum mass
and the radius at 1.4 Mg are to that section of the EoS.
The maximum value of the slope must still be less than 1
to preserve causality, as shown in Equation 12, and the
curves where ¢ = 1 are the maxima for this EoS. The
mass-radius plots using this EoS are shown in Figure 10.

VI. DISCUSSION AND CONCLUSION

We investigated how important the inner core EoS is
for determining the maximum mass of a NS. To do this,
we used a simple linear fit to closely match the APR [1]
EoS at high densities and approximated the low-density
EoS as either 0 or by using the BPR-NV [2][5] crust equa-
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FIG. 11. Top: As the pressure increases at €;, the two curves
converge, so the slope of that section does not have a large
impact. This is likely because € is low enough at the Chan-
drasekhar limit that not much of that portion of the equation
of state is relevant. Bottom: The greater the slope is, the
less that the pressure at €; matters for the maximum mass.
The slope does have a large impact on the maximum mass.

tion. Neither simplified EoS fit the curve well for the en-
tire range, but both could be fit well near a specific area,
often chosen to be either maximum mass or the radius at
1.4Mg. The trends from this extremely simplified model
suggest that the outer core EoS is very important for
creating the mass-radius plots for a NS.

Further conclusions could be drawn from the other sim-
plified model that used two linear segments. This simpli-
fied EoS with the crust and two distinct linear sections is
adequate to accommodate the gross features observed on
the Mass-Radius plot. The radius at 1.4 Mg was mostly
depending on the pressure at 2n4¢, with the slope having
little impact, especially at large p values. The maximum
mass was dependant on slope and pressure. The slope
had a more significant impact than pressure, and ss slope
increased, the pressure at 2ng,; had less of an effect.

If the radius at 1.4 Mg can only be measured within
10%, the slope of the second distinct linear section does
have a measurable impact on the NS. The error bars on
the measurements would be roughly 1.2 km, and the dif-
ferences between the two slopes never exceeded 0.4 km,
so all reasonable EoS would be well within the error bars.



In Figure 10, the radius at 1.4 My, is always within the
error bars, so the simplified EoS would indistinguishable
from the complex one given that measurment precision.

If the mass of the NS can also only be measured to
an accuracy of 10%, the error bars would be around 0.2-
0.3 km. Both the slope and pressure at €; have effects on
the maximum mass that exceed the error bounds, making
the simplified EoS distinguishable from the more complex
one given that measuring ability. Some of the simplified
EoSs result in maximum masses within the error bounds,
but the majority do not. If a high slope is chosen, the
pressure at €; has much less of an impact on maximum
mass. At low slopes, like 0.3, changing the pressure at €;
changes the mass by an amount close to the hypothetical
measurement uncertainty. When measuring mass, it is
possible to distinguish between the complex and simpli-
fied EoSs.

With more precise measurements of NS masses and
radii, more outer core EoSs can be ruled out. As the

radii of low-mass NSs are measured more precisely, the
pressure around 2n4,¢ can be further constrained. As the
upper limit on the mass of a NS is better determined,
the slope can be more constrained, limiting the speed of
sound in inner regions of the NS, revealing more infor-
mation about the structure. As observations continue
to advance in this “Golden Age” of neutron star astro-
physics, constraints on the EoS should greatly increase.
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