NanoKelvin Quantum Matters: Coherence, Correlations, Chaos.

Subhadeep Gupta
UW NSF Phys REU, 31st July 2023

Quantum: Philosophical Questions Precise Calculations

A century's worth of Technical Advances

Quantum: Tools (expt. and theor. harnessing) for Quantum metrology, sensing, simulation, computing.

Atom: Motivation and Test-bed for quantum mechanical ideas.

Basic Research (Curiosity/Measurement) Driven Pursuits

Technological Advances (eg. Laser, Atomic Clock)

Atom(s): Pristine Quantum System(s) precisely manipulable with EM fields.
Interfacing with condensed matter, nuclear physics, particle physics.
Helping advance quantum technologies and the second quantum revolution.

Some ultracold atomic physics landmarks (99-05)

Degenerate Fermi gas

Bosons

Fermions

Molecular Bose-Einstein condensate

Superfluidity of Fermi pairs

(Jin, Hulet, Thomas, Ketterle, Grimm, others)

2020's – BECs in space, for fundamental physics (NASA)

2020's - companies pursuing neutral atom quantum computing

Sparked by basic research in small teams in various research labs around the world

UW Ultracold Atoms Labs

Today:

Taming Atoms:

Making quantum gases

Coherence: Atom Optics and Interferometry

Correlations: Interactions, creating few- and many-body states

Chaos: Many-body

Dynamical Delocalization

Taming/Training Atoms:

First remove the freedoms
Then re-introduce in a
controlled way

Random motion ⇔ Temperature

10⁸ trapped Yb atoms at 50 μK

50yrs: bound electron(s) motion

50yrs: atom c.o.m. motion

Quantum Degeneracy in a gas of atoms

So all we have to do for a quantum degenerate gas is keep cooling it, right?

Space Density

(n=N/V)

Quantum Degeneracy in a gas of atoms

1 atom per quantum state

Cooling to the fundamental limits of quantum mechanics

N atoms

V volume

T temperature

position-momentum uncertainty principle

$$(\Delta x)^3 \sim V$$

$$(\Delta p)^3 \sim (m k_B T)^{3/2}$$

Number of atoms =

(available position space) (available momentum space)

ħ³

Quantum Phase Space Density

$$\frac{n \hbar^3}{(m k_B T)^{3/2}}$$

- 1

(n=N/V)

 $n\lambda_{\rm dB}^3 \sim 1$

Air n ~ 10^{19} /cm³, T_c ~ 1mK Stuff n ~ 10^{22} /cm³, T_c ~ 0.1K

Everything (except He) is solid

Dilute metastable gases n ~ 10¹⁴/cm³

 $T_c \sim 1 \mu K$!! Ultracold !!

and ~ non-interacting

Different Behaviors in the Cold

Different Behaviors in the Cold

Relevant Ultracold Temperatures on the Log Kelvin Scale

Laser Cooling (of "2-level" atoms) excited Р states \mathbf{Z}' σσabsorbed emitted Q+photon photon X σ-Different momenta $\hbar \omega_{\rm abs} < \hbar \omega_{\rm em}$ => COOLING! Magneto-Optical Trap (MOT) "Workhorse" of laser cooling

Atom Source ~ 600 K; UHV environment

Evaporative Cooling in a Conservative Trap

The "other" atom-light interaction

Evaporative Cooling in a Conservative Trap

Boson degeneracy: Bose-Einstein condensate

Today:

Taming Atoms:

Making quantum gases

Coherence: Atom Optics and Interferometry

Correlations: Interactions, creating few- and many-body states

Chaos: Many-body

Dynamical Delocalization

+2 ħk +4 ħk +6 ħk

Matter Wave Diffraction off an Optical Crystal

-6 ħk

-4ħk

-2 ħk

Diffraction from longer standing wave pulse with frequency difference

Increasing intensity of pulse →

Narrow Momentum width << 2 photon momentum

Pulsed Standing Wave Optical Dipole Potentials

Atom Optics and Interferometry

Output ports A and B record differential phase between paths 1 and 2.

Vary readout pulse phase

Force sensing:

acceleration gravity (g, G) gradiometry grav. waves

eg.

 $\Phi_1 - \Phi_2 \sim mgX^*T \sim gk^*T^2$

~ space-time area

Atomic Properties:

Polarizabilities
Atom-surface interactions

Fundamental Tests:

Decoherence/QM Equivalence Principle QED test

Large Momentum Transfer for precision Al

Measurement Precision scales as $\delta\Phi / \Phi \sim \delta\Phi$ / (space-time area)

Can increase T with fountain, drop tower, rockets, in space

eg.
$$\Phi_1 - \Phi_2 \sim \text{mgX*T} \sim \text{g(n)k*T}^2$$
 $\sim \text{space-time area}$

Large momentum transfer atom optics can be very useful!

High Efficiency Momentum Transfer by Bloch Oscillations

Bloch Oscillations: A condensed matter physics concept. Electrons in lattice + E field

Here Bloch oscillations by sweeping frequency difference between laser beams

Quantum Transport Approach to Atom Optics

Band Structure in 1D sinusoidal periodic potential (Optical Lattice)

Quantum Transport Approach to Atom Optics

Phase and phase noise during transport process by Bloch oscillations as intensity (U₀) inevitably fluctuates

"Magic Depth" Interferometry

Next: Magic Trapped Atom Interferometry - Gravimetry in a magic depth trapped geometry

B. Plotkin-Swing et al. Phys Rev Lett **121**, 133201(2018) Dan Gochnauer et al. Phys Rev A **100**, 043611 (2019) Katie McAlpine et al. Phys Rev A **101**, 023614 (2020)

Today:

Taming Atoms:

Making quantum gases

Coherence: Atom Optics and Interferometry

Correlations: Interactions, creating few- and many-body states

Chaos: Many-body

Dynamical Delocalization

Role of Quantum Statistics: Fermion Degeneracy

Fermi pressure due to Pauli Exclusion principle

Quantum Degeneracy:
$$n\lambda_{\rm dB}^3 \sim 1$$
 => T_F ~ 1µK

Controlling interactions

Resonance between two free atoms and a molecule

Control with external magnetic field

Example

6
Li + 6 Li

Entrance channel

Closed channel

2-Species Trapping

Bose-Fermi Double Superfluid

⁴He-³He mixtures. Strong B-F repulsion. B-F superfluid not yet realized Recently B-F superfluids in atomic systems in ⁷Li-⁶Li, ¹⁷⁴Yb-⁶Li, ⁴¹K-⁶Li NEW QUANTUM SYSTEM!

Two-Element Mixture of Bose and Fermi Superfluids

3 FEB

Li₂ Fermionic Superfluidity

Horizontal position (µm)

¹⁷⁴Yb-⁶Li Bose-Fermi Dual-Superfluid

R.J. Roy et al. Phys Rev Lett **118**, 055301 (2017)

Proposed detection of Entrainment in a mixture of superfluids (with Forbes group, WSU)

Dissipation-free drag of one SF by another: Current-Current coupling

Andreev-Bashkin effect predicted for ⁴He-³He superfluid mixture.

$$\boldsymbol{v}_b = \frac{\hbar \boldsymbol{\nabla} \phi_b}{m_b}$$

Ring trap to suppress densitydensity coupling (mean field) effects, X100 stronger in e.g. dipole oscillation

Entrainment between proton and neutron fluids in neutron stars play a role in "glitching" in pulsars

Proposed detection of Entrainment in a mixture of superfluids (with Forbes group, WSU)

$$\mathbf{v}_{D} = \frac{\hbar \nabla \phi_{b}}{m_{b}} - \frac{\rho_{\mathrm{dr}}}{m_{b} n_{b}} \left(\frac{\hbar \nabla \phi_{b}}{m_{b}} - \frac{\hbar \nabla \phi_{D}}{m_{D}} \right),$$

$$\mathbf{v}_{D} = \frac{\hbar \nabla \phi_{D}}{m_{D}} - \frac{\rho_{\mathrm{dr}}}{m_{D} n_{D}} \left(\frac{\hbar \nabla \phi_{D}}{m_{D}} - \frac{\hbar \nabla \phi_{b}}{m_{b}} \right).$$

Block flow in one species, induce circulation in other

Finite $\nabla \phi_b$ leads to shift of up to 2/3 fringe in interference pattern (~ 5um in 60ms TOF)

Interference in time-of-flight

Numerical Simulation by Khalid Hossain, WSU

Today:

Taming Atoms:

Making quantum gases

Coherence: Atom Optics and Interferometry

Correlations: Interactions, creating few- and many-body states

Chaos: Many-body

Dynamical Delocalization

Some Simple Classical Systems Exhibit Chaos

Double Pendulum

Demo: https://www.youtube.com/watch?v=U39RMUzCjiU

δ-Kicked Rotor/Rotator

https://en.wikipedia.org/wiki/Kicked_rotator

What about the quantum version of classically chaotic systems?

Quantum Simulation of Many-Body Kicked Rotor/Rotator

Classical Kicked Rotor: textbook example of chaos in classical mechanics B. Chirikov Phys. Rep. 52, 263 (1979)

$$H(p,x,t)=p^2/2+K\cos(\theta)\sum_{\mathbf{n}}\delta(t-\mathbf{n})$$

Total Energy = Kinetic + Potential (Potential is flashed)

Energy grows **linearly** with *n* in the chaotic regime.

Quantum Kicked Rotor

Quantum Kicked Rotor (QKR) Hamiltonian

$$H = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} + K \mathrm{cos}(2kz) \sum_{n \in \mathbb{Z}} \delta(t-nT)$$

QKR: Atom Optics realization by Mark Raizen group
F. Moore et. al. PRL 75, 4598(1995)

The energy growth of the classical case is arrested by quantum-mechanical interference.

Single-particle physics of dynamical localization and quantum resonances (kick period and Talbot time $(2m\lambda^2/h)$ are (in) commensurate) studied by many groups since 1995....

Anderson Localization (1958): Interference driven insulator due to lattice disorder

Recent questions:

How do interactions change this interplay between interference and disorder? Under what conditions do you get many-body localization?

QKR equivalent to Anderson Quantum Transport in p-space

Quantum Kicked Rotor (QKR) Hamiltonian

$$H = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} + K \mathrm{cos}(2kz) \sum_{n \in \mathbb{Z}} \delta(t-nT)$$

synthetic dimension

Pseudo-random phase acquired at each lattice point in momentum.

K controls tunneling - Kapitza-Dirac diffraction (phase grating) to momenta $(2h/\lambda)$ multiples apart

Dynamical Localization in *p*-lattice in the QKR is equivalent to Anderson localization in *z*.

S. Fishman et al. PRL 49, 509 (1982)

Disorder is "built-in"

Quantum Kicked Rotor + Interactions?

Kinetic + Potential

Quantum Kicked Rotor (QKR) Hamiltonian

$$H = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial z^2} + K \cos(2kz) \sum_{n \in \mathbb{Z}} \delta(t - nT) + \text{interactions}$$

Interacting (or many-body) QKR:

Large body of theoretical work.

eg C. Zhang et al PRL **92**, 054101 (2004)

S. Lellouch et al PRA 101, 043624 (2020).

V. Galitski & collabs. PRL 124, 155302 (2020)

& several others (Sheplyanksy, Flach,..)

But no prior experimental signatures despite efforts since mid-90s.

Existing Contradictions in the theory: Mean-field (gn_{1D}) numerics predict delocalization with sub-diffusive evolution: $\langle E_z \rangle = A^*t^{\alpha}$ (0 $\langle \alpha \rangle$ 1)

Beyond MF, low energy Luttinger liquid theory in 1D predicts α =0 ie, localization

Connection to position-space many-body localization (MBL).

simplest:

mean field interaction $\sim a_s$ X density but, contact in x => long-range in p

QKR in tight 1D tubes

Size scales.

a_s = 5.6nm,

Osc length = 53nm,

Lattice spacing = 536nm.

Tunneling negligible for s > 15.

Dynamics restricted to 1D. Emphasizes the "forward" part of the interaction.

 n_p = pulse number

Transition from Localization to Anomalous Diffusion

Transition from Localization to Anomalous Diffusion

Sub-diffusive with exponent ~ 0.5 (<1)

Delocalization vs Kick and Interaction Strengths

Earlier onset with K and gn

Exponent range (0.4-0.8)

Mean field theory breaks down for long onset times

Today:

Taming Atoms:

Making quantum gases

Coherence: Atom Optics and Interferometry

Correlations: Interactions, creating few- and many-body states

Chaos: Many-body

Dynamical Delocalization

UW Ultracold Atoms and Quantum Gases Group

Members:
 Xinxin Tang
 Tahiyat Rahman
 Carson Patterson
 Nicolas Williams
 Emmett Hough
 Lynnx
Siddharth Mukherjee
 Aidan Kemper
 DG

Theory collaborators:

S. Kotochigova (Temple) E. Tiesinga (NIST)
Chuanwei Zhang (UT Dallas) Michael Forbes (WSU)

