
Quantifying the energy scale of hadronically decaying tau leptons at the ATLAS
detector using a mixture density network (MDN)

Miles Cochran-Branson∗

Physics Department, Lawrence University

Quentin Buat†

Physics Department, University of Washington
(Dated: August 27, 2022)

The tau lepton is of great interest in studying the Higgs boson through the decay channel H →
τ+τ−. Experimental limitations, however, prevent us from exploring this decay channel easily. One
step in analyzing tau leptons at the ATLAS detector is quantifying their energy scale. In particular,
accurate energy scale calibration will help both in understanding the Higgs and tau lepton better.
In the following paper, we explore a novel approach to calibrating the tau energy scale (TES) using
neural networks. We compare the current method using a boosted regression tree (BRT) with a
mixture density network (MDN). We find that the MDN outperforms the current method for tau
energy scale calibration while also providing extra information about the quality of prediction for
each tau in the detector.
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I. INTRODUCTION

The tau lepton, heavy cousin to the electron, is an ex-
cellent probe of the Higgs mechanism. Of the leptonic
decays of the Higgs boson, the H → ττ has the highest
branching ratio. This makes the tau a natural probe of
the Higgs boson coupling to leptons [1]. In run two of pp
collision data at

√
s = 13TeV at the Large Hadron Col-

lider (LHC), there are a predicted 500× 103 such events
[2]. As a result, we have a significant source of data for
testing, allowing us to discriminate between high purity
and low purity taus. There are, however, many experi-
mental challenges in exploring this decay channel. This
paper addresses one of these challenges: calibration of the
energy scale of tau leptons in the ATLAS detector.

The tau lepton has a mass of 1.777GeV. Because of
it’s large mass, the tau decays nearly instantly in the de-
tector with a proper decay length of 87µm [1]. The first
active layer of ATLAS is at 33mm, thus we must look
for the decay products of the tau. The tau decays in two
primary ways: leptonically and hadronically. Leptonic de-
cays come in the form of τ → ντνℓℓ where ℓ = e, µ, and
hadronic decays come in the form τ → ντhadrons. The
hadronic decays have a 65% branching ratio and it is
these decays which we will discuss. Hadronic decays of
taus primarily involve pions, where the majority include
one charged pion (∼50% of all possible tau decays) while
the next highest decay channel includes three charged
pions (∼15% of all possible tau decays). Therefore, taus
look like a jet of pions in the detector with either one or
three tracks as shown in Fig. 1. Neutrinos from the decay
cannot be reconstructed, thus the only particles visible to
us are the pions. We will call the visible decay products
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FIG. 1: The decay of a tau lepton to charged and
neutral pions looks like a jet in the detector with an
inner cone of visible products—the τ cone—and an

outer cone of neutrinos—the jet cone.

of hadronic taus τhad-vis.
The ATLAS detector [3] at the LHC is one of the

two multi-purpose detectors at CERN. It is a cylindri-
cal detector with several active layers. The first layers in
the detector, the tracker, can detect charged particles. A
large superconducting solenoid magnet curves the path
of particles which can then be detected by the tracker
system. Outside these layers are two sets of calorimeters:
electronic and hadronic. These can detect most parti-
cles including neutral particles. At the very edge of the
detector lie muon chambers where tracks of muons can
be detected. Muon paths are bent by a superconducting
torodial magnet. Only neutrinos cannot be seen by AT-
LAS, however their presence can be inferred from miss-
ing energy in collisions. This is precisely measured in the
transverse plane as LHC physics is invariant in this plane.
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An important part in understanding how the tau be-
haves in the detector is quantifying its energy scale. We
define the tau energy scale (TES) to be an estimate of
the transverse momentum of the tau which we will label
pT (τhad-vis). The current method for finding this variable
takes data from the calorimeter and tracker and combines
the estimate from these into a variables called pComb.

T . As
a final step, this data is run through a Boosted Regression
Tree (BRT) with a target of ptruth

T /pComb.
T . The algorithm

developed for this purpose is described in detail in [4].
This work has been focused on replacing the BRT with
neural networks. Because it has been shown that mod-
ern methods of machine learning beat those of old as in
[5], we expect that neural networks should perform bet-
ter than a BRT. Additionally, we use a Mixture Density
Network (MDN) to provide us a probabilistic interpreta-
tion of our calibration [6]. This gives us the added bonus
of being able to quantify the quality of our prediction for
pT . Moreover, MDNs have been used with great success
both in ATLAS such as [7], and in other fields and indus-
try such as [8–10] where they show excellent performance
over old methods of machine learning.

In the following paper, we demonstrate that neural net-
works beat the current methods for tau energy scale cal-
ibration. We also show how, by using the output from a
Gaussian mixture model in the neural network, we can
extract data on the quality of each prediction of pT for
any event we feed into our network.

II. METHODS

High energy physics (HEP) at the LHC relies heav-
ily on simulation. In particular, to see new physics, we
must first simulate what we would like to see such as
an H → ττ event. These simulations are done typically
with Monte Carlo particle production simulations such as
PYTHIA [11]. Simulated events are then passed through
a very sophisticated simulation of the ATLAS detector
powered by Geant4 [12–14]. Finally, these signals are
digitized and treated as real data. In developing an al-
gorithm for calibration of the tau energy scale, we will
work with simulated data. This allows us to perform ma-
chine learning with a set of target data determined by
true values given from simulation. Once this algorithm
is well understood, we will test with the well-understood
dataset Z → ττ before searching for new physics.

The algorithm we are developing uses machine learn-
ing and neural networks to describe the pT spectrum of
tau leptons. A neural network is a collection of nodes and
hidden layers connected to each other by weights. These
components act as a function: they take some input pa-
rameters and return an output based on how it has been
trained. In order to train a neural network, we provide
the network with training data containing expected in-
put data and truth data. The network computes weights
connecting nodes between layers by taking the input data
and comparing it to the truth. This is done by evaluat-

ing a function called the loss function. The network can
progress towards a solution to this function by comput-
ing its gradient and moving towards a minimum. In our
work, we use a mixture density network. In this case, we
feed data into a neural network and take the output pa-
rameters as inputs to a mixture density model. This gives
us a probabilistic interpretation of the network output.

A mixture density model is simply a linear combination
of conditional probability densities, i.e., our model looks
something like

p(t|x) =
k∑

i=1

πi ϕi(t|x) (1)

where ϕi(t|x) are conditional probability densities with
input x and output t, and πi are mixing parameters sat-
isfying

k∑
i=1

πi = 1 and πi ≤ 1.

We will use Gaussian Mixture Models (GMM) which are
simply a linear combination of k Gaussian distributions,
i.e.,

ϕk(t|x) =
k∑

i=1

πi ϕi(t|x;µi, σi), (2)

where µi are the means of each Gaussian distribution and
σi are the standard deviations. We will need to find some
global mean and standard deviation in our calculations.
These are given by

µglobal =

k∑
i=1

πiµi, (3)

and

σ2
global =

k∑
i=1

πi(σ
2
i + µ2

i )− µ2
global (4)

as determined in [15].
An essential piece in obtaining a probabilistic output

from the model is the definition of the loss function. This
is extensively covered in [6]. The central principle is to
take the residuals of the mixture density network and
apply the negative logarithm to this, i.e., our loss function
is defined as

E =
∑

Eq (5)

where the contribution from event q is given by
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Eq = − ln

(
k∑

i=1

πi ϕi(t
q|xq)

)
. (6)

In the following section we explain our implementation
of this architecture in order to properly calibrate the tau
energy scale.

III. NETWORK ARCHITECTURE AND
MODELING

In order to quantify the energy spectrum of tau leptons
in the ATLAS detector, we use a novel machine learning
algorithm built with the keras [18] architecture on top
of tensorflow [19]. These frameworks allow us to easily
model with MDNs. The current method of pT calibra-
tion of tau lepton uses standard techniques to estimate
the tau energy scale (TES), described in detail in [20].
In particular, a first order estimate of the pT is given by
combining data from the tracker and calorimeter into a
variable called pComb.

T . In our plots we will call this vari-
able combined. This variable is then fed into a Boosted
Regression Tree (BRT) with a target of pTruthT /pComb.

T .
This is done as performing regression on truth data yields
a more descriptive model for pT prediction.

This work is focused on replacing the existing BRT
with an MDN in order to improve the performance of the
algorithm. Moreover, with an MDN we can obtain an es-
timate of the quality of each predicted τhad-vis candidate
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FIG. 2: Example of a variable standardized. Here we
show pComb.

T before (top panel) and after (bottom
panel) standardization. Notice that the shape of the

distribution is preserved yet this distribution is shifted
and squeezed such that the mean is zero and the

standard deviation is one.

FIG. 3: Network architecture of MDN. The dense neural
network contains six hidden layers each with

successively fewer nodes. The last six node layer passes
its weights to a two-component Gaussian mixture model
which in turn gives us a probabilistic interpretation of

the network prediction.

via the global standard deviation. Essentially, our net-
work learns both the expected value of pT as well as the
uncertainty in this prediction. Obviously this is hugely
advantageous as we can select events based on quality of
prediction. Moreover, use of a modern form of machine
learning paves the way for future networks to learn di-
rectly from data from the tracker and calorimeter instead
of using combined estimates.

Variables used for training the MDN are given in Table
I. Variables marked as standardized have been modified
such that the mean of each is zero and the standard de-
viation is one via

xstandardized =
xold − µ

σ
(7)

where µ is the mean of the variable and σ the standard
deviation. An example of a standardized variable used—
pT combined—is shown in Fig. 2. Variables that are not
standardized are either probabilities, only used in the
BRT, or are ratios of two variables. For instance, the
Neural Network decay mode variables are probabilities
and as such not standardized.

The network we chose is shown in Fig. 3. The dense
network part of this network is nearly identical to pre-
vious attempts at using neural networks for tau energy
scale calibration. Preliminary results using recursive neu-
ral networks in 2019 show that a neural network has
promise. These results, however, did not beat the BRT.
We have changed the network used via addition of the
Gaussian mixture output layer. The Gaussian mixture
model we use has two components, thus we must utilize
the methods described above to obtain global mean and
standard deviations to get predictions from this model.

In training the model, we performed a coarse scan of
hypterparameters. In particular, we scanned for optimal
learning rate and batch size evaluated on a) if the net-
work actually produced results and b) how the network
compared in performance to the BRT output. For learn-
ing rate we scanned the range [10−2, 10−15] and for batch
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Variables Used Only in NN Only in BRT Standardized Description of Variable
µ x Average interaction per bunch crossing
nvertices x Number of nominal vertices in each event
ntracks x Number of tracks
nπ0 x Number of neutral pions in event (Reco)
ρ x x Measure of pileup in detector

⟨λcenter⟩ x
Distance of the cluster shower center from
the calorimeter front face measured along
shower axis

⟨E/V ⟩ x
Cluster first moment in energy density. E
and V represent the energy and volume
of each cluster

⟨λ2⟩ x Cluster second moment

⟨fpresampler⟩
Fraction of cluster energy deposited in
barrel and endcap calorimeters.

PEM Probability of the cluster to be EM-like

pComb.
T x

Transverse momentum interpolated from
calorimetric corrections to energy
measurement and TPF reconstruction

pCalo
T x x First order calorimeter estimate of TES

ηTPF x x Pseudorapidity from TPF reconstruction
ηCalo. x Pseudorapidity from calorimeter reconstruction

γπ

Relative difference in total energy of the charged
pion and total neural pion energy:
γπ = (Echarged − Eneutral)/(Echarged + Eneutral)

pEM
T /pLC

T

Ratio of calorimetric energy at the EM scale to
the local hadron calibration transverse
momentum pLC

T

pLC
T /pComb.

T

Ratio of the local hadron calibration
transverse momentum to pComb.

T

pTFP
T /pComb.

T

Ratio of the TPF reconstruction
transverse momentum to pComb.

T

TPF BDT values x BDT values of the TPF algorithm for 1p0n vs
1p1n, 1p1n vs 1pXn, and 3p0n vs 3pXn

NN Decay Mode Prob Values x NN decay mode probabilities for discriminations
1p0n, 1p1n, 1pXn, 3p0n, and 3pXn

TABLE I: Input variables used in calibrating tau energy scale. Variables used in the current algorithm using a BRT
and the proposed algorithm are presented. Standardized variables are transformed such that the mean of the sample
is zero and the standard deviation is one. For more information on cluster variables, see [16]. For more information

on tau particle flow (TPF) variables see [17].

size we scanned the range [16, 128]. A two-dimensional
scan was performaed on a three-by-three grid to deter-
mine a rough range of values that worked well. Additional
tuning was then done variable by variable. We found that
a learning rate of 10−5 and a batch size of 64 gave the
best results. Additionally, extensive work was invested
in finding which variables to standardize and which cuts
were necessary. Outliers were removed with

pEM
T /pLC

T < 25

pLC
T /pComb.

T < 25

pTFP
T /pComb.

T < 25.

Outliers in the above variables arose from division by
numbers very close to zero. Because pComb.

T was standard-
ized, many events were shifted close to zero thus creating

on the order of 20 outliers removed by these cuts.
Training was done on the simulated dataset γ∗ →

ττ which can be found in the ATLAS database.1 This
dataset contains ∼ 1.26 × 107 events. Each event con-
tains approximately two taus from decay of the γ∗. The
network was trained on a third of the available taus of
which 20% were used for validation (∼ 2.50 × 106 taus)
and 80% for training (∼ 1.25×107 taus). Training usually
reached on optimum within 100 epochs. Early stopping
was employed with a tolerance of 20 epochs. Total train-
ing time was approximately 18 hours on an lxplus-gpu
node. Testing was done on the other third of the taus

1 group.perftau.MC20d_StreamTES.425200.Pythia8EvtGen_A14
NNPDF23LO_Gammatautau_MassWeight_ v3_output.root.
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FIG. 4: Response lineshape for all τhad-vis candidates. In (a) the plot of the ratio is shown in log scale between zero
and two while in (b) we zoom in on the peak, plotting the ratio between 0.9 and 1.1 in linear scale.
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FIG. 5: Resolution and response as a function of pT , η, and average interaction per bunch crossing. Resolution is
determined by taking the width of the plot of the ratio as in Fig. 4 at 68% confidence level. Response is determined

by computing the mean of the distribution in Fig. 4. Error bars in response are determined from statistical
uncertainties and errors in pT are determined by the width of each bin.
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FIG. 6: Response lineshape for better and worse events determined by evaluating |σ/µ| < 1 for each τhad-vis
candidate. The plot in (a) shows better events with a very sharp peak around one which decays quickly, while (b)

shows worse events with a very broad peak.

(∼ 6.24 × 106 taus). The results of this testing are dis-
cussed below.

IV. RESULTS

We evaluate the performance of the network on multi-
ple metrics in comparison to the final performance of the
current method of TES calibration. In Fig. 4 we show the
response of the network in comparison to both the BRT
(final, plotted in red) and pComb.

T (combined, plotted in
black). The response is simply the predicted pT divided
by the truth pT from simulation. Desirable behavior is a
highly peaked distribution that tapers away as steeply as
possible from the peak. Although the distribution is not
required to peak at one, this is easier to interpret than a
distribution which is systematically shifted from one. Fig.
4 shows most of the response distribution. From this plot
we can clearly see that the MDN beats the final as the
distribution is more highly peaked around one. Moreover,
the width of the distribution at 68% confidence level is
8.7% for final while the MDN produces a curve of width
8.3%.

In order to better understand the performance of the
model we can view this distribution in two other ways.
First, we define the resolution as the width of the re-
sponse distribution in Fig. 4 at 68% confidence level. We
can then evaluate the resolution curve as a function of
true pT , true η, and average interaction per bunch cross-
ing. This is done by working with the response distribu-
tion in bins of pT , η, and average interaction per bunch

crossing. Desirable performance is to have as thin a peak
as possible for all bins, thus we want the resolution curve
to be as low as possible. We plot these curves in Fig.
5(a,b,c). As shown in these curves, performance of the
MDN is better than the BRT as a function of all vari-
ables plotted.

We also take a closer look at the performance by plot-
ting the mean of the response curve in Fig. 4 as a func-
tion of true pT , true η, and average interaction per bunch
crossing as shown in Fig. 5(d,e,f). Error bars in response
are determined from statistical uncertainties while error
bars in the x-variable indicate the width of each bin. De-
sirable behavior for this plot is to be as close to one as
possible. As a function of pT , the MDN beats Final ex-
cept at very low pT —the first bin in this plot contains the
pT range [10, 15] GeV. After this bin, response is compa-
rable to or better than final. Response as a function of η
and average interaction per bunch crossing performs bet-
ter than final. Thus, we find that the MDN does indeed
perform better than the BRT.

As mentioned previously, one advantage of using an
MDN is that for each prediction by the network we have
some information about the quality of this prediction.
This is obtained by using the global standard deviation
computed by taking the square root of Eqn. 4. We can
then find better events by evaluating the inequality

∣∣∣∣σµ
∣∣∣∣ < 1. (8)

It follows that worse events will have |σ/µ| > 1. We can
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FIG. 7: Resolution plot with splitting of better and
worse events evaluated by |σ/µ| < 1. Better events have
very low resolution, while worse events have resolution

above combined variables.

visualize this splitting by looking at the response curves
for better and worse events as shown in Fig. 6. In Fig.
6(a) we have plotted the better events in comparison to
final and combined. Of the better events, the width of
the MDN response at 68% confidence level has a width
of 5.7%. In contrast, the worse events shown in Fig. 6(b)
have a width at 68% confidence level of 13.5%. For com-
parison, the width of final response is 8.7%. Notice that
in both cases this distribution is normalized so the in-
tegral of the histogram is one in order to better show
comparison to final and combined.

We can further examine this splitting by plotting the
resolution as a function of true pT for better and worse
events. This is shown in Fig. 7. Here we can clearly see the
splitting in resolution between better and worse events.
For |σ/µ| < 1 the resolution curve is significantly lower
than final ranging from about 3% below final in the low
pT regime to 1% below final at higher pT . Events with
|σ/µ| > 1 perform worse compared to final except in the
low pT region ranging from <1% worse than Final to
slightly greater than 2% above Final.

V. DISCUSSION AND CONCLUSIONS

We have shown that the novel mixture density network
for calibration of the tau energy scale performs better
than the current method which uses a boosted regres-
sion tree. We have used multiple metrics to evaluate both
networks. Plots of response, and plots of resolution and
response as a function of true pT , true η, and average

interaction per bunch crossing, demonstrate significant
performance gains in using an MDN over a BRT. More-
over, with an MDN we are able to obtain an estimate of
the quality for each predicted τhad-vis candidate. This al-
lows us to split events by better and worse performance
by evaluating |σ/µ| where σ is the global standard de-
viation given by the mixture model, and µ is the global
mean. The ability to split events can be very valuable.
For instance, we can see where in the detector we perform
worse in estimating the energy scale of taus. Moreover,
in future analysis, as a result of having such a wealth of
tau data, we can even split the data from an H → ττ
analysis into better and worse τhad-vis candidates.

Currently, a final round of validation is being imple-
mented in order to merge this work with the ATLAS
software. This will provide all collaborators access to our
algorithm and will allow them to harvest the extra piece
of information provided by the global standard deviation
given by our network. While the use of a prediction of
uncertainty for each pT estimate of τhad-vis candidates is
most certainly useful, the precise utility of this has yet
to be fully realized.

Because we have shown that an MDN outperforms
a BRT, we can now begin to explore the possibility of
removing combined variables from the workflow. This
means building a more complex network to learn di-
rectly from tracker and calorimeter data. A preliminary
exploration of this seemed to yield promising results but
did not approach the performance achieved above. The
utility of exploring such an algorithm becomes apparent
when considering the TES calibration workflow. Notice
that in order to obtain an estimate of the TES, we first
must obtain estimates from several other algorithms such
as the tau particle flow algorithm for predicting tracks
in the detector. This means, with each new simulated
dataset, parameters from all of these algorithms must be
re-tuned. If we can train a network without these param-
eters we will have a more efficient workflow and may even
be able to gain better performance.
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Appendix: Supplemental material

For more information and additional plots, see the fol-
lowing presentations of this work:

• For more detailed plots on performance, refer to
the tau working group plenary meeting presenta-
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tion [21]. Slides can be found on the CERN indico
at this link.

• For a discussion of machine learning techniques
used, see the EPE-ML plenary meeting [22]. Slides
and a recording of the talk can be found on the
CERN indico at this link.

• For a broad overview of the project, and an intro-
duction to the basics of machine learning see the
REU final presentation [23]. Slides can be found on
the University of Washington REU website.

Code from our analysis can be found on GitHub in
qbaut/taunet.
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