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▪ An objective of condensed matter: to study emergent phenomena in quantum many-body 
systems.

▪ Examples of emergent phenomena:

Motivation: Condensed Matter Physics

▪ Superconductors

▪ Superfluids

▪ Ferromagnets and antiferromagnets

▪ Graphene
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Motivation: 1D Systems Studied in Condensed Matter

▪ Serve as playgrounds for studying emergent phenomena
▪ Examples:

▪ Thin wires
▪ Optical lattices (top right)
▪ Carbon nanotubes (two pictures below)
▪ 1D arrays of interacting quantum dots, vortices, or other 

confined quantum systems
▪ These serve as inspirations for instructive toy models, such as 

quantum spin chains (the subject of this talk!)
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Spin Chains: a Physical Origin

▪ Consider some electronic material:

▪ Can model the system’s dynamics and interactions by the following Hamiltonian:

Kinetic 

energy term 

for valence 

electrons

Coulombic/electrostatic 

repulsion term for the 

valence electrons

Kinetic 

term for 

ions

Electron-ion 

electrostatic 

attraction term.

Electrostatic 

repulsion 

term for ions
4



Spin Chains: a Physical Origin

▪ Simplifying assumptions to make the Hamiltonian 
more tractable:

1. Electron-ion attraction term Vei is a spatially-periodic 
lattice potential experienced by the valence electrons 
(see figure). Also, ignore lattice distortions.

2. This periodic potential Vei is an array of deep 
quantum wells (each well corresponds to an ion site), 
so that there is one valence electron localized at each 
well/ion/lattice site.

▪ Such assumptions result in a Hamiltonian telling us that the spins of nearest-
neighbor electrons either have a tendency to align or anti-align, thereby explaining 
ferromagnetism and anti-ferromagnetism.
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Spin Chain Hilbert Space: The Rigorous Definition

▪ Definition: A spin chain Hilbert space is a Hilbert space that is equal to the tensor product 
of the finite-dimensional inner-product (or Hilbert) spaces corresponding to each site.

▪ To keep things simple, all the finite-dimensional Hilbert spaces of the lattice sites have the 
same dimension, which we denote by d.

▪ Intuition for tensor product: If each site contains a spin-1/2 particle like the electron, then 
d =2, so if the total number of sites is L, the dimension of the whole spin chain Hilbert 
space is 2L, such that a general state in spin chain is a superposition of 2L possible 
configuration states.

Each lattice site corresponds to a 

finite-dimensional Hilbert space
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Spin Chains: Ising Model

▪ Consider the following Hamiltonian, called the 1D Ising Hamiltonian and defined on 
a spin chain with infinitely-many lattice sites

▪ Right away, we notice that this Hamiltonian only includes spin degrees of freedom:
▪ is the operator that corresponds to the measurement of the z-component of 

the spin of the electron at the ith lattice site.
▪ In the basis of spin up and spin down states for the z-component of spin, the Pauli 

operators are represented by the following matrices:
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Ising Model

▪ The ground state of the 1D Ising Hamiltonian is two-fold degenerate, i.e. the ground 
state subspace is two-dimensional and is spanned by two states:
▪ All spin up in z-orientation

▪ All spin down in z-orientation
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Transverse Field Ising Model

▪ But suppose we introduce a transverse magnetic field in the x-direction. Then we add another term 
to the Ising Hamiltonian, leading us to the transverse field Ising model:

▪ |B| is the strength of the magnetic field, and as we increase this strength, the spins go from being 
spin up or down with a z-orientation to being more and more oriented in the x-direction of the 
magnetic field.
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Transverse Field Ising Model Phase Diagram

▪ Hence, the two-fold spin-up-and-down degeneracy of the ground state should disappear when |B| is 
large enough, causing all the spins to be oriented toward the magnetic field.

▪ The loss of ground state degeneracy happens at |B| =1 and corresponds to the transition from the 
ferromagnetic phase to the paramagnetic phase (as shown in the phase diagram below)
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But how can we know where the critical points occur? Magnetization

▪ Magnetization: In electrodynamics, a pseudovector field that represents the density of the 
magnetic dipole moment, i.e. evaluates magnetic dipole per unit volume at every position.

▪ Spin can be thought of as a measurement proportional to the magnetic dipole moment, so 
also corresponds to measurement of the z-component of the magnetic dipole moment at 
the ith lattice site.

▪ Since our system is discrete, can treat “per lattice site” as “per unit volume,” so that the 
measurement by        essentially means the measurement of the z-component of 
magnetization.

▪ Net magnetization: Average magnetization over the whole system.
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Observations about Net Magnetization in Transverse Ising

▪ One can make two key observations about the ground states          of the transverse field Ising model:

1. For any ith lattice site,                                                for |B| < 1 and = 0 otherwise.

2. for |B| > 1 and = 0 otherwise.

▪ #1 informs us that for |B| < 1, the ground states have a correlation between a measurements of the 
z-component of magnetization at any ith lattice site and an analogous measurement at a distance 
infinitely far away.

▪ This signifies that there must be a net magnetization of the spins in the z-direction at least in the 
case that |B|<1.

▪ #2 means that for |B| > 1, spin flips applied to a ground state at almost every subinterval of the spin 
chain must result in a state that overlaps with (i.e. not orthogonal to) that ground state.
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The Two Observations Combine into a Full Picture

▪ With spin flips most often not resulting in states orthogonal to   for |B| > 1, we can deduce that 
the net magnetization is zero for |B| > 1.

▪ This makes the ferromagnetic phase, which is characterized by nonzero net magnetization, be 
exactly |B| < 1.

▪ In addition, this also makes |B| > 1 the paramagnetic phase, since we see zero net magnetization and 
the spins like to orient in the direction of the transverse magnetic field as |B| → infinity.
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Can such analysis be generalized to any spin-chain model?

▪ We were lucky that in the Ising model, we could analyze net magnetization to identify the 
collective behavior of spins under different magnetic regimes.

▪ But magnetization is a very specific kind of observable and it would be nice to be able to 
identify phases for other more complicated Hamiltonians defined over the spin-chain.

▪ This provides a motivation for generalizing the measurement procedure via order and 
disorder parameters.
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Spin Chains: Heads-Up

▪ We will focus our attention on two types of spin chains:
▪ Infinite:

▪ Finite spin chains with L spins arranged in a circle (thereby periodic boundary 
conditions):
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Hamiltonians: Heads-Up

▪ Our Hamiltonians of interest correspond to nearest neighbor interactions that have a bounded 
norm:

▪ Assume that Hamiltonian H is symmetric with respect to some Abelian group G of finite order n.

▪ A representation of G as a direct product of cyclic groups is:

▪ Further assume that G is an onsite symmetry, i.e. can write for any generator:                              ,

▪ Generic assumption: Trivial subspace (i.e. eigenspace of G with eigenvalue 1) has a non-degenerate 
lowest energy state.
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Definition of Order Parameter

▪ Please note: This is a generalization of Michael Levin’s definition provided in:
M. Levin, Constraints on order and disorder parameters in quantum spin chains, arXiv:1903.09028
https://arxiv.org/pdf/1903.09028.pdf

▪ While Levin’s definition was just for        symmetry, mine is for all finite abelian groups. 17

:

https://arxiv.org/pdf/1903.09028.pdf


Definition of Disorder Parameter

▪ Please note: This is a generalization of Michael Levin’s definition provided in:
M. Levin, Constraints on order and disorder parameters in quantum spin chains, arXiv:1903.09028
▪ While Levin’s definition was just for        symmetry, mine is for all finite abelian groups.
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One of the main results by Michael Levin that I generalized to all finite 
Abelian groups
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▪ Note: This result is for the finite circular spin-chains.

▪ Using general results like the one above, I aim to prove some theorems regarding how the strengths 
𝛿 of order and disorder parameters are bounded from below for spin chains with any Abelian 
symmetries.

▪ We are seeking to prove results that are analogous to those in Michael Levin’s paper:
M. Levin, Constraints on order and disorder parameters in quantum spin chains, arXiv:1903.09028

▪ Most important goal: To relate Levin’s constraints on order and disorder parameters to the 
classification of phases of the spin chain using group cohomologies 
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Spin Chains: a Physical Origin

▪ Consider two valence electrons inhabiting 
neighboring quantum wells. Due to tunneling, their 
wavefunctions overlap. The overall wavefunction for 
the two electrons must be anti-symmetric. 

▪ The two electrons electrostatically repel, so it would 
be more energetically favorable if the spatial part of 
their overall wavefunction was anti-symmetric.

▪ Such spatial anti-symmetry enforces a symmetric 
alignment of the electron spins, so there is an 
energetic benefit for nearest-neighbor spins to align. 23



General Topological Picture of Phases

A real vector space formed by Hermitian operators acting on some Hilbert space. For our 
purposes, the Hilbert space is vector space of all possible states in some quantum system.

A subspace formed by Hermitian operators that can be physically 
realized as Hamiltonians describing localized interactions.

Disconnected subset consisting of local Hamiltonians that are gapped. 
Gapped means there is a nonzero difference between energies of the 
ground state and first excited state and the ground state is nondegenerate.
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Suppose we wanted to consider systems with a certain kind of 
symmetry

Subspace of Hamiltonians that describe localized interactions.

Hamiltonians obeying the symmetry

A real vector space formed by Hermitian operators.
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