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Abstract

In a paper called “Constraints on order and disorder parameters in quantum spin

chains,” Michael Levin derived general constraints on order and disorder parameters in

Ising symmetric spin chains. Levin’s main result in his paper was a theorem showing

that in a circular spin chain, any Hamiltonian that has a non-degenerate ground state

and is gapped, translationally invariant, and Ising symmetric must at least have either

a nonzero order parameter or a nonzero disorder parameter. In the process of proving

the theorem, he proved a lemma that made a general statement about correlation and

symmetry defect properties of any state in a circular spin chain. These properties

namely had to do with notions of order and disorder that are weaker than long-range

order and disorder. In this report, we prove an extension of the lemma to all finite

Abelian symmetries. Based on this generalization, we discuss some possible implica-

tions regarding how Levin’s theorem could be generalized to arbitrary finite Abelian

symmetries as well.

1 Introduction
One of the objectives of condensed matter physics is to study emergent phenomena in

quantum many-body systems. Often, systems differing in microscopic detail, such as different

interaction potentials and chemical makeup, display some common collective behavior. For

this reason, condensed matter physicists are interested in the unifying principles of these

common emergent behaviors rather than in peculiar details of very specific systems [1].
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Some examples of condensed-matter systems with interesting emergent phenomena include

superconductors, superfluids, ferromagnets, anti-ferromagnets, and graphene.

This paper explores some theoretical properties of quantum spin chains. Though spin

chains are toy models, they are inspired by real physical examples of 1D condensed matter

systems, such as thin wires, optical lattices, carbon nanotubes, and one-dimensional arrays

of quantum dots, vortices, and other confined quantum systems. Another important physical

origin of the spin chains is the positive ion lattice of some typical electronic material like a

metal or an insulating solid [1].

In this report, we provide an extension of the theoretical results in Ref. [2], a recent paper

by Michael Levin. While Levin derived general constraints on order and disorder parameters

in Ising symmetric spin chains, we discuss how some of these constraints could be extended

to spin chains with arbitrary finite Abelian symmetries. In section 2, we rigorously define

the spin chain Hilbert space and indicate the properties of Hamiltonians we are interested

in. In section 3, we generalize Ref. [2]’s definitions of weak order and weak disorder to any

finite Abelian symmetry. In section 4, we exploit these definitions to formulate and prove a

finite-Abelian extension of Lemma 1 from Ref. [2]. This lemma was originally a statement

that if one restricts an Ising symmetric state in the circular spin chain to some arbitrary

pair of disjoint intervals, the state must either be weakly ordered or weakly disordered.

Here, we generalize this lemma by proving an analogous claim for any state with a finite

Abelian symmetry. Along with two other lemmas, Levin used Lemma 1 to prove Theorems

1 and 2, the main results of his paper. Theorem 1 claimed that in a circular spin chain,

any Hamiltonian that has a non-degenerate ground state and is gapped, translationally

invariant, and Ising symmetric must at least have either a nonzero order parameter or a

nonzero disorder parameter. Theorem 2 is a weaker statement but for Hamiltonians that are

not required to be translationally invariant. Based on our generalization of Lemma 1, we

suggest how Theorems 1 and 2 from Ref. [2] could be generalized in section 5.

2 Setup of the Problem
We consider finite one-dimensional spin chains consisting of L spin sites forming a circular

lattice. The spin at each site forms a d-dimensional vector space, where d is a finite nonzero

integer. In other words, our system’s state space is a dL dimensional Hilbert spaceH that is a

tensor product of all the d-dimensional vector spaces of the individual lattice sites. We label

the L sites by 1, 2, 3,..., L to make {1, 2, ..., L} denote the set of all lattice sites (see Figure

1(a) in Ref [2]). Our Hamiltonians of interest correspond to nearest neighbor interactions

that have a bounded operator supnorm:

H =
L∑
i=1

Hi,i+1, (1)

such that

supp(Hi,i+1) ⊂ {i, i+ 1} and ‖Hi,i+1‖ ≤ 1.

We assume that H is symmetric with respect to some Abelian group G of finite order

n. That is, there exists a faithful unitary operator representation R of G on H such that H
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commutes with every element of the image R(G). For convenience, we will treat the image

R(G) as the group G itself, so ∀g ∈ G, R(g) will be denoted by g whenever there is no

danger of ambiguity.

Just as in Ref [2], we further assume that the Abelian symmetry of the Hamiltonian is

on-site. To clarify, the symmetry G is on-site if and only if the representation R mentioned

above is such that ∀g ∈ G, the operator R(g), which we simply denote by g, is of the form

g =
L∏
i=1

gi, (2)

where supp(gi)={i}.

3 Generalized Definitions of Weak Order and Disorder
Let us begin by introducing some notation: for each subset X ⊂ {1, 2, ..., L}, let GX be

the action of group G restricted to the linear subspace of H corresponding to X, and ∀g ∈ G,

let gX denote the element of GX corresponding to g, i.e.

gX =
∏
i∈X

gi.

Definition 1 Let I1 and I2 be disjoint intervals. A state |ψ〉 is δ weakly-ordered on I1, I2
with respect to g ∈ G− {1} if and only if there exists an operator B such that

1. B is supported on I1 ∪ I2.

2. B transforms under the trivial representation of the group G, i.e. ∀h ∈ G, h†Bh = B.

3. B transforms under a nontrivial irreducible representation ρ of GI2, such that gI2 is not

in the kernel of ρ. In other words, ρ(gI2) 6= 1 and ∀h ∈ G,

h†I2BhI2 = ρ(hI2)B.

4. |〈ψ|B |ψ〉 |≥ δ.

5. ‖B‖ ≤ 1.

A direct consequence of conditions 2 and 3 is that ∀h ∈ G, h†I1BhI1 = ρ(hI2)B, so

another way to state these two conditions is that B transforms under some nontrivial irre-

ducible representations of GI1 and GI2 that are oppositely charged (i.e. that are complex

conjugates of each other), such that B also transforms non-trivially under the respective

cyclic subgroups 〈gI1〉 and 〈gI2〉. Let us further note that given that G is Abelian, all of

its irreducible representations are one-dimensional and are thereby equivalent to their own

characters. Therefore, any ρ(hI2) must be an O(h)th root of unity, where O(h) is the order

of group element h. Regarding element g, ρ(gI2) must be a nontrivial O(g)th root of unity,

so ∃k ∈ {1, 2, ..., O(g)− 1} s.t.

g†I2BgI2 = ei
2πk
O(g)B. (3)

3



Definition 2 Let I1 and I2 be disjoint intervals. A state |ψ〉 is δ weakly-disordered on I1, I2
if and only if ∀g ∈ G− {1}, there exists an operator C(g) such that

1. C(g) is supported on I1 ∪ I2.
2. C(g) transforms under the trivial representation of the group G, i.e. ∀h ∈ G,

h†C(g)h = C(g).

3. C(g) transforms under some irreducible representation ρ′ (can be trivial or nontrivial) of

the group GI2, i.e. ∀h ∈ G,

h†I2C
(g)hI2 = ρ′(hI2)C

(g).

4. |〈ψ|C(g)gJ |ψ〉 |≥ δ, where J is an interval between I1 and I2.

5.
∥∥C(g)

∥∥ ≤ 1.

Again, a direct consequence of conditions 2 and 3 is that ∀h ∈ G, h†I1C
(g)hI1 = ρ′(hI2)C

(g).

Furthermore, B from the definition of weak order and C(g) from the definition of weak dis-

order both satisfy the property that ∀h ∈ G, ∃k ∈ {0, 1, 2, ..., O(h)− 1} s.t.

h†I2DhI2 = ei
2πk
O(h)D and h†I1DhI1 = e−i

2πk
O(h)D, (4)

where D = B or C(g).

4 Proof of a Generalization of Lemma 1 from Ref. [2]
Theorem 3 (Generalized Lemma 1) Let |ψ〉 be an eigenstate of the Abelian symmetry

group G of order n. For any given δ ∈ [0, 1] and every pair of disjoint intervals I1 and I2
separated by a distance of at least one lattice site, the state |ψ〉 is either δ/(n − |G/〈g〉|)
weakly-ordered on I1, I2 with respect to some g ∈ G− {1} or (1− δ)/n weakly-disordered on

the complementary intervals J1, J2.

Proof. Just like Michael Levin in his proof of Lemma 1, we use the Fuchs-van de Graaf

inequality [3]. A consequence of this inequality is that for any two states |ψ〉 and |ψ′〉 and

any subset X ⊂ {1, 2, ..., L}, we have

max
supp(A)⊂X

1

2
|〈ψ|A |ψ〉 − 〈ψ′|A |ψ′〉 | + max

supp(U)⊂Xc
|〈ψ|U |ψ′〉 |≥ 1, (5)

where operators A satisfy ‖A‖ ≤ 1 and operators U are unitary. Let |ψ′〉 = gI2 |ψ〉 and

X = I1 ∪ I2. Substituting this into Eq. (5) yields

max
supp(A)⊂I1∪I2

1

2
|〈ψ| (A− g†I2AgI2) |ψ〉 | + max

supp(U)⊂J1∪J2
|〈ψ|UgI2 |ψ〉 |≥ 1. (6)

It is clear from Eq. (6) that for any given δ ∈ [0, 1], either

(i) ∃g ∈ G− {1} s.t. the first term in Eq. (6) is greater than or equal to δ.
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(ii) ∀g ∈ G− {1}, the second term in Eq. (6) is greater than or equal to 1− δ.

We claim that in case (i), |ψ〉 is δ/(n− |G/〈g〉|) weakly-ordered on I1, I2 with respect to g,

while in case (ii), it is (1− δ)/n weakly-disordered on J1, J2.

Case (i): We define F := A∗−g†I2A∗gI2 , where A∗ is a choice of operator A that maximizes

the first term in Eq. (6), and let

Bρ :=
1

2n2

∑
a∈G

a†

(∑
b∈G

ρ(bI2)b
†
I2
FbI2

)
a, (7)

where ρ is any irreducible representation of G.

Since G is a finite Abelian group, it can can be written as a direct product of finite cyclic

groups:

G = 〈S(1)〉× 〈S(2)〉× ...× 〈S(m)〉,
where S(1), S(2),..., S(m) are a certain choice of generators of G. To simplify notation, let

ωu := O(S(u)). Then, for any irreducible representation ρ, ρ(S
(u)
I2

) must be an ωthu root of

unity, i.e. ∃kρu ∈ {0, 1, 2, ...ωu − 1} s.t.

ρ(S
(u)
I2

) = exp
[
i
2πkρu
ωu

]
.

Based on this, we can rewrite Eq. (7) as

Bρ =
1

2n2

∑
a∈G

a†

(
ωm−1∑
vm=0

e
−i2πkρmvmωm S

(m)
I2

−vm

(
...

(
ω2−1∑
v2=0

e
−i2πkρ2v2ω2 S

(2)
I2

−v2
(
ω1−1∑
v1=0

e
−i2πkρ1v1ω1 S

(1)
I2

−v1
FS

(1)
I2

v1

)
S
(2)
I2

v2

)
...

)
S
(m)
I2

vm

)
a,

(8)

Since for any integer ω > 1, the sum of all ωth roots of unity is always zero, we can see from

Eq. (8) that the sum of Bρ over all irreducible representations of G is∑
ρ

Bρ =
1

2n

∑
a∈G

a†Fa, (9)

Notice that the projection of F onto the space of operators that transforms under the trivial

representation of 〈gI2〉 equals to zero, that is,

O(g)−1∑
v=0

g†I2
v
FgI2

v = 0, (10)

because inserting the expression for F in terms of A∗ into this sum results in a telescoping

sum. An immediate consequence of Eq. (10) is that ∀ρ s.t. ρ(gI2) = 1, we have that Bρ = 0.

Thus, if we let N be the set of all irreducible representations of GI2 s.t. ρ(gI2) 6= 1, then∑
ρ

Bρ =
∑
ρ∈N

Bρ. (11)
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Combining Eqs. (9) and (11) yields∑
ρ∈N

Bρ =
1

2n

∑
a∈G

a†Fa, (12)

Since ∀a ∈ G, |ψ〉 is an eigenstate of a (the eigenvalue of which must be an O(a)th root

of unity), it is clear that the right-hand side of Eq. (12) has the same absolute value of the

expectation value with respect to |ψ〉 as F/2, so∣∣∣∣∣∑
ρ∈N

〈ψ|Bρ |ψ〉

∣∣∣∣∣ =
1

2
|〈ψ|F |ψ〉 |= max

supp(A)⊂I1∪I2

1

2
|〈ψ| (A− g†I2AgI2) |ψ〉 |≥ δ. (13)

Hence, ∃ρ̃ ∈ N s.t |〈ψ|Bρ̃ |ψ〉 |≥ δ/card(N). It is easy to check that Bρ̃ satisfies conditions

1, 2, 3, and 5 met by operator B in Definition 1 of weak order. To complete the proof of our

claim for case (i), all we have left is to find card(N).

To construct an irreducible representation of GI2 , one must map gI2 to one of the O(g)th

roots of unity. Regardless of which root gI2 gets mapped, the number of possible images that

other elements of GI2 can have under an irreducible representation is the same. This implies

that the number of irreducible representations in which g gets mapped to 1 must be n/O(g),

which equals to the order of the quotient group G/〈g〉. Thus, card(N) = n − |G/〈g〉|, so

|〈ψ|Bρ̃ |ψ〉 |≥ δ/(n− |G/〈g〉|).
In all, we found an operator Bρ̃ that satisfies the conditions for B in Definition 1 with δ

replaced by δ/(n − |G/〈g〉|), making |ψ〉 qualify as a δ/(n − |G/〈g〉|) weakly-ordered state

on I1, I2.

Case (ii): For all g ∈ G− {1} and all irreducible representations ρ of GJ2 , define

C(g)
ρ :=

1

n2

∑
a∈G

a†

(∑
b∈G

ρ(bJ2)b
†
J2
U (g)
∗ bJ2

)
a,

where U
(g)
∗ is a choice of unitary operator U that maximizes the second term in Eq. (6). By

the same reasoning as for Eq. (9), we can obtain∑
ρ

C(g)
ρ =

1

n

∑
a∈G

a†U (g)
∗ a, (14)

Again, we use the fact that |ψ〉 is an eigenstate of G to obtain from Eq. (14) that∣∣∣∣∣∑
ρ

〈ψ|C(g)
ρ gI2 |ψ〉

∣∣∣∣∣ = |〈ψ|U (g)
∗ gI2 |ψ〉 |= max

supp(U)⊂J1∪J2
|〈ψ|UgI2 |ψ〉 |≥ 1− δ. (15)

Therefore, there exists an irreducible representation ρ̃ s.t |〈ψ|C(g)
ρ̃ gI2 |ψ〉 |≥ (1 − δ)/n. In

addition to this property, one can check that C
(g)
ρ̃ satisfies the other defining properties that

make |ψ〉 qualify as a (1− δ)/n weakly-disordered state on J1, J2. This completes the proof

of our theorem.

6



5 Discussion of Future Work
To precisely figure out the finite-Abelian extensions of Theorems 1 and 2 in Ref. [2],

we are analyzing how Levin’s Lemmas 2 and 3 generalize to any finite Abelian symmetry.

Currently, we suspect that Lemma 3 could be easy to generalize. At least, we can see

how a version of a famous result by Hastings [4] that the proof of Lemma 3 relies on can

easily be generalized by replacing the projection of states onto the even subspace of H by a

projection onto the trivial subspace of H (i.e. eigenspace with eigenvalue 1) of an Abelian

symmetry. Regarding Lemma 2, we still need some time to draw some conclusions regarding

its generalization.

Theorems 1 and 2 rely on rigorous definitions of order and disorder parameters that are

specific to Ising symmetric spin chains. Levin provides these definitions in Ref [2]. Based

on how weak order and disorder have been generalized, we find it most intuitive for the

finite-Abelian extensions of order and disorder parameters to be as follows:

Definition 4 Let g ∈ G−{1}. A collection of operators {Oi : i ∈ X} with X ⊂ {1, 2, ..., L}
is called a (δ, `, g) order parameter for a state |ψ〉 if and only if

1. Oi transforms under a nontrivial irreducible representation of G such that g is not in

the kernel of the representation.

2. Oi is supported on [i− `, i+ `].

3. |〈ψ|O†iOj |ψ〉 |≥ δ for all i, j ∈ X with |i− j|≥ 2`.

4. ‖Oi‖ ≤ 1.

The set X is called the domain of definition of the order parameter.

Definition 5 A collection of operators
⋃
g∈G−{1}{O

(g)
i : i ∈ X} with X ⊂ {1, 2, ..., L} is

called a (δ, `) disorder parameter for a state |ψ〉 if and only if

1. O
(g)
i transforms under some irreducible representation of G (can be trivial or nontriv-

ial).

2. O
(g)
i is supported on [i− `, i+ `].

3. |〈ψ|O(g)†
i O

(g)
j

∏j
p=i+1 gp |ψ〉 |≥ δ for all i, j ∈ X with |i− j|≥ 2`.

4.
∥∥∥O(g)

i

∥∥∥ ≤ 1.

The set X is called the domain of definition of the disorder parameter.

Relying on these definitions, we hope to generalize Theorem 1 into a claim of the following

form: in a circular spin chain, for any gapped, translationally invariant, and G-symmetric

Hamiltonian that has a non-degenerate lowest energy state |Ω〉 in the trivial subspace, the

state |Ω〉 must either have a (δ, `, g) order parameter for some g ∈ G−{1} or a (δ, `) disorder

parameter defined over the whole spin chain (i.e. X = {1, 2, ..., L}) with δ equal to some

fixed positive number less than 1 and ` somehow bounded from above. Additionally, we

hope to achieve a similar finite-Abelian extension of Theorem 2.
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