Indistinguishable Single Photons from Coupled Nano-Cavities

Carlos Sevilla, Abhi Saxena, Arka Majumdar (AM Lab)

Outline

- 1. Why we care
- 2. Cavity QED
- 3. Method
- 4. Results
- 5.Experimental Design

Applications

- Stepping stone towards Quantum technology, specifically Quantum Computing.
- Development of an emitter of indistinguishable Photons
- Photon Entanglement: $|00\rangle = |0\rangle \otimes |0\rangle$ $|\varphi\rangle_{AB} = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

(Schmidt Decomposition)

Elements of Cavity-QED

- Fabry-Perot, the simplest model of a cavity
- Intensity peaks at cavity resonance modes

Two-State within a Cavity

- For a two state system within a cavity our parameters are:
- $\Delta \omega \sim \text{Lindewidth (FWHM)}$
- $Q \sim \text{Quality factor} = \frac{\omega}{\Delta \omega}$
- $K \sim$ Photon Decay Rate = $\frac{w}{Q}$
- $\gamma \sim$ Non-Resonant Decay
- $\gamma^* \sim$ Pure Dephasing
- $g \sim$ Coupling coefficient
- $V_{eff} \sim \text{Cavity Mode Volume}$

Indistinguishable Particles from Cavities

• Bare Quantum Emitters:

$$I = \frac{\gamma}{\gamma + \gamma^*}$$

- Increased indistinguishability and efficiency as compared to spectral filtering.
- Promising performance at room temperature
- Increased Performance with coupled cavities

Theory of Coupled Cavities

- Two Coupled cavities increase indistinguishability
- Increased degrees of freedom to optimize
- Given e, c_1, c_2 creation and annihilation operators
- *g*,*J*, coupling coefficients

$$H = \omega_e e^{\dagger} e + \omega_{c_1} c_1^{\dagger} c_1 + \omega_{c_2} c_2^{\dagger} c_2 + g(e^{\dagger} c_1 + ec_1^{\dagger}) + J(c_1^{\dagger} c_2 + c_1 c_2^{\dagger})$$

Degrees of Freedom

- Our cavities are designed with Q(k), and V_{eff}
- need the largest possible coupling since

$$g \propto \frac{1}{\sqrt{V_{eff}}}$$

- V_{eff} of our first cavity is designed as small as possible.
- Our only degrees of Freedom are, $Q_2(k_2)$ and J.
- General improvement of I and B as we increase R_1 .

Simulated Results (Q₂)

$$Q_1 = 6 \ x \ 10^4$$
, $J = 2.1 \gamma$

$$R_{1} = \frac{4g^{2}}{\gamma + \gamma^{*} + \kappa_{1}}, R_{2} = \frac{4J^{2}}{R_{1} + \kappa_{1} + \kappa_{2}}$$

- Limit for unidirectional flow as $R_2 \leq K_2$, $R_1 \leq k_1 + R_2$
- Because $R_2 \propto \frac{1}{R_1}$, Efficiency depends non-monotomically on V_{eff} , unlike 1 cavity

Simulated Results (J) $Q_1 = 6 \times 10^4$, $Q_2 = 2 \times 10^6$

$$R_{1} = \frac{4g^{2}}{\gamma + \gamma^{*} + \kappa_{1}}, R_{2} = \frac{4J^{2}}{R_{1} + \kappa_{1} + \kappa_{2}}$$

- In region 1, $R_2 < k_2$, indistinguishability unaffected by J, acting as Region 1 in previous plot.
- In region 2, **I** drops as photons go back and forth between cavities
- Efficiency increases with R_2 , limited by R_1 ,
- No longer affected by V_{eff}

Optimization

- System optimized for β and I with high Q_2 ,
- moderate J just above γ .

• Additionally optical mode volume: $0.1 \left(\frac{\lambda}{n}\right)^2 \leq V_{eff} \leq 1 \left(\frac{\lambda}{n}\right)^2$

Experimental Design

- Proposal of a feasible experimental design using Colloidal Quantum Dots (CdS).
- We use a SiN nanobeam cavity to achieve a high Q_1 and small enough V_{eff} .
- Our second cavity has no limitations of V_{eff} , so we use a ring resonator
- J controlled by distance between cavities

Parameters

- For our Colloidal QDs our emission are: $\lambda = 630nm$,
- And our SiN nanobeam gives us:

$$Q_1 = 6 \ x 10^4$$
, $V_{eff} \sim 1.2 \ (\frac{\lambda}{n})^3$

• And Likewise: $J = 2.1\gamma$ $Q_2 = 2 \times 10^6$

Category	Self-assembled QD in a single cavity ^{13,26}	SiV center in coupled cavities ¹¹	Colloidal QD in coupled cavities (optimal)	Colloidal QD in coupled cavities (experimental)
γ*/ γ	117	2500	83000	83000
$Q_1 & Q_2$	~5×104	7×10 ³ & 5×10 ⁵ / 3.6×10 ³ & 5×10 ⁴	6×104& 2×106	6×104& 2×106
Kettective	$\sim (\lambda/n)^3$	0.007(λ/n) ³	0.1(λ/n)³	1.2(λ/n)³
Indistinguishability	~0.6	0.94/0.78	0.9	0.63
Efficiency	12.1%	0.26%/0.99%	0.24%	0.15%

Comparison

References

Bogdanov, S.; Shalaginov, M. Y.; Boltasseva, A.; Shalaev, V. M. Material Platforms for Integrated Quantum Photonics. *Opt. Mater. Express* **2017**, *7* (1), 111. https://doi.org/10.1364/OME.7.000111.

Takeda, S.; Furusawa, A. Toward Large-Scale Fault-Tolerant Universal Photonic Quantum Computing. *APL Photonics* **2019**, *4* (6), 060902. https://doi.org/10.1063/1.5100160.

Gondarenko, A.; Levy, J. S.; Lipson, M. High Confinement Micron-Scale Silicon Nitride High Q Ring Resonator. *Opt. Express* **2009**, *17* (14), 11366. https://doi.org/10.1364/OE.17.011366.

Grange, T.; Hornecker, G.; Hunger, D.; Poizat, J.-P.; Gérard, J.-M.; Senellart, P.; Auffèves, A. Cavity-Funneled Generation of Indistinguishable Single Photons from Strongly Dissipative Quantum Emitters. *Phys. Rev. Lett.* **2015**, *114* (19), 193601. https://doi.org/10.1103/PhysRevLett.114.193601.

Choi, H.; Zhu, D.; Yoon, Y.; Englund, D. Cascaded Cavities Boost the Indistinguishability of Imperfect Quantum Emitters. *Phys. Rev. Lett.* **2019**, *122* (18), 183602. https://doi.org/10.1103/PhysRevLett.122.183602.

Acknowledgments

- Abhi Saxena, Arka Majumdar, James Whitehed, Christtopher Munley, David Rosser
- Subhadeep Gupta, Gray Rybka, Cheryl McDaniel, Linda Vilett
- And a special thanks to other participants in the University of Washington REU program