NICOLE MAN PROF. LESLIE ROSENBERG, PROF. GRAY RYBKA UC SANTA CRUZ

VISUALIZING RESONANT MODES IN ADMX

OUTLINE

- BACKGROUND
- ADMX DESIGN
- OPERATING PROCEDURES
- MY PROJECT
- CONCLUSIONS

WHY AXIONS?

- No observable CP symmetry violation as expected
- Peccei-Quinn Solution
- Axions appear as pseudo-Goldstone bosons from this symmetry breaking
- Weak coupled and long decay times
- Elusive invisible axions in µeV mass range

COUPLING TO PHOTON

*KSVZ and DFSZ models

INVERSE PRIMAKOFF CONVERSION

INVERSE PRIMAKOFF CONVERSION

ADMX AXION DARK MATTER EXPERIMENT

THE HALOSCOPE METHOD

- External magnetic field ~ 7.6 T stimulates axion conversion to microwave photons
- Tunable resonator to sweep frequency space
- Increase signal to noise via cooling cavity and JPA amplifiers

THE DETECTOR

ADMX SITE

DATA TAKING CADENCE

- Tune cavity to given frequency
- Adjust JPA
- Listen and Digitize (100s)
- Shift to different frequency, moving tuning rod

SAG (SYNTHETIC AXION GENERATOR)

- Create a signal that mimics a real axion signal, inject it into the weak port and use the resulting digitized output power spectrum to:
 - Blind injection serves as a verification of setup of system

Rybka-GRC 2019

 Help us understand our sensitivity

CAVITY RESONANT FREQUENCY

Power signal is maximized if on cavity's resonant frequency

CAVITY TUNING

CAVITY TUNING

TUNING RODS

GEAR BOX

CAVITY MODE

- Maxwell's equations and boundary conditions result in standing waves
- Use mode which maximizes power signal
- Couple to TM_{010} , λ is twice length of cavity

 TM_{010} mode in cavity

Warm Cavity Mode Map

Cold Cavity Mode Map

MAXIMIZE POWER SIGNAL

Form Factor
$$C_{mnp} = \frac{\left| \int_{V} dV E_{mnp}(x,t) \cdot B(x)_{ext} \right|^{2}}{V B_{ext}^{2} \int_{V} dV \epsilon_{r} E_{mnp}^{2}}$$

Signal Power

$$P_a \propto B_{ext}^2 QVC_{mnp}$$

Q = loaded quality factor V = volume of cavity $B(x)_{ext} =$ external B-field

 $E_{mnp}(x, t) = \text{E-field produced by axion}$

 $\epsilon_r =$ relative permittivity of cavity

VALIDATING RESONANT MODES

- In ADMX, TM_{010} provides the largest form factor
- Frequency scanned ~700MHz 1GHz
- Can track this mode using network analyzer transfer

measurements

• Mode map

Frequency (Hz)

WIDE SCANS

MODE MAPS

 We have the reliable means of making mode maps for all future scans

 Can be used for both symmetric and antisymmetric mode maps

FUTURE WORK

- Will be able to
 compare mode maps
 to predicted
 simulations
- Can validate optimal axion-sensitive resonant modes in future ADMX operations

Frequency (MHz)

ACKNOWLEDGEMENTS

- Prof. Gray Rybka, Prof. Leslie Rosenberg
- ADMX Collaboration
- NSF
- UW Physics REU
- The ADMX collaboration gratefully acknowledges support from the US Dept. of Energy, High Energy Physics DE-SC00116655 & DE-SC0010280 & DE-AC52-07A27344

CITATIONS

- Brubaker, B.(2018). First results from the HAYSTAC axion search (Ph.D Thesis)
- Du, N. Et al. (ADMX Collaboration), Phys. Rev. Lett. 120, 151301 (2018).