Developing a Technique to Differentiate Axion Signals from Radio-Frequency Interference signals in ADMX

Michaela Guzzetti Prof. Gray Rybka Smith College UW INT REU Program

Outline

- What is Dark Matter? How do we know it exists?
- Where do Axions come from? Why are they good DM candidates?
- Brief ADMX Background
- My Project

© KIRAC, AMNH

Conclusions & Future Work

Dark Matter

- Interacts primarily gravitationally
- Must be cold

Galactic Rotation Curves

 Expected shape for spherically symmetric mass

 $v_c(r) = \left(\frac{GM(r)}{r}\right)^{1/2}$

 Expected contributions from the disk and gas alone do not create curves which match measured rotation curves

Structural Evolution

•

- At t ~ 50,000 yrs universe becomes matter dominated
- Regular matter cannot clump together until t ~ 380,000 yrs
- Dark matter is unaffected by photons and can therefore clump together at 50,000 yrs, baryons can quickly catch up at the time of decoupling

Image credit: Symmetry Magazine

AXIONS

Strong CP Problem: Axions to the Rescue

 $L_{\theta} = \theta \frac{g^2}{32\pi^2} F_a^{\mu\nu} \tilde{F}_{a\mu\nu}$

This term in the QCD Lagrangian violates P and T
 reversal invariance but conserves charge conjugation invariance, so it violates CP invariance

As a result, a large neutron EDM (strong CP violation) is expected, but has not been observed! This requires an "unnaturally" small (< 10^{-10}) value for θ .

Peccei-Quinn Solution

- Introduces a new global (PQ) symmetry and transforms θ from a parameter into a dynamic variable
- The combination of simultaneous and explicit PQ symmetry breaking creates a pseudo-Goldstone boson, namely the axion

Strong CP Problem: Axions to the Rescue

 $L_{\theta} = \theta \frac{g^2}{32\pi^2} F_a^{\mu\nu} \tilde{F}_{a\mu\nu}$

This term in the QCD Lagrangian violates P and T
 reversal invariance but conserves charge conjugation invariance, so it violates CP invariance

As a result, a large neutron EDM (strong CP violation) is expected, but has not been observed! This requires an "unnaturally" small (< 10^{-10}) value for θ .

Peccei-Quinn Solution

- Introduces a new global (PQ) symmetry and transforms θ from a parameter into a dynamic variable
- The combination of simultaneous and explicit PQ symmetry breaking creates a pseudo-Goldstone boson, namely the axion

Brubaker 2018

Axions as CDM

- Electrically neutral
- Have an athermal production mechanism -> born cold and stay cold
- QCD numerical & analytical studies show the most likely axion mass to be \sim 1-100 μeV
 - Stable on cosmological timescales
 - $\Omega_a \approx \Omega_{DM}$

Image credit: NASA

Image credit: National Geographic

Axion Haloscope

- Converts invisible

 axions into
 detectable
 microwave photons
 in a large magnetic
 field via the inverse
 Primakoff effect
- Tunable so we can scan a range of frequencies

What does it mean to detect a candidate?

candidate: any excess power signal above a specified SNR threshold

- Radio-Frequency Interference (RFI)
 - · does not enter the cavity, enters somewhere in the electronics
 - does not show dependence on the cavity resonant frequency

My Goal

- Reduce the amount of Radio-Frequency Interference (RFI) signals we rescan as potential candidates
- Use chi-squared statistics to analyze how well a certain signal fits an axion-like cavity line shape vs. an RFI-like out-of-cavity line shape

SNR = 30

Power vs. Cavity Frequency Offset

SNR = 3

Power vs. Cavity Frequency Offset

My Model

- I assume signals are either axion-like (follow the cavity line shape) or RFI-like (do not follow the cavity shape)
- I have a signal sampled at several frequency offsets from the cavity center
- I'm testing with simulated data where we have 20,000 scans within +/- 25 kHz of the cavity resonance moving in steps of 5 kHz, each scan with a Gaussian noise distribution centered on zero with a standard deviation of 1.3E-24 W

Using chi-squared statistics to distinguish low SNR signals

- Fit a given signal twice, one using the axion-like (Lorentzian) function and the other using the RFI-like (constant) function
- 2. Calculate a chi-squared value for each of the two fits
- 3. Use the difference, $\chi^2_{axion} \chi^2_{RFI}$, to categorize the signals into either axion-like or RFI-like

ex.
$$\chi^2_{axion} = 1 \ \chi^2_{RFI} = 2 \longrightarrow$$
 axion fit is better $\chi^2_{axion} - \chi^2_{RFI} = -1$
 $\chi^2_{axion} = 2 \ \chi^2_{RFI} = 1 \longrightarrow$ RFI fit is better $\chi^2_{axion} - \chi^2_{RFI} = +1$

Power vs. Cavity Frequency Offset

Distance from Resonant Frequency (Hz)

Power vs. Cavity Frequency Offset

Distance from Resonant Frequency (Hz)

χ^2 difference for Axion and RFI signals

20

Conclusions

- Using this model we can reject ~ 93% of RFI signals for rescanning (given an SNR of 3), while still having less than a 1% chance of missing an axion. This could greatly increase scan speed.
- If the SNR is lower or there are fewer data points (bigger steps) this method still works but not quite as well. For example, if SNR = 2.2, we can only reject ~73% of RFI signals while only missing less than 1% of axions. However, this is still a great improvement from before.

Future Work

 Test this model using real data and ensure that it can be a trusted method before implementing it into the greater analysis procedure

Acknowledgements

- Gray Rybka & Leslie Rosenberg
- ADMX Collaboration
- National Science Foundation
- The University of Washington
- The ADMX collaboration gratefully acknowledges support from the US Dept. of Energy, High Energy Physics DE-SC00116655 & DE-SC0010280 & DE-AC52-07A27344

References

- Brubaker, B. (2018). First results from the HAYSTAC axion search (Ph.D. Thesis).
- Du, N. et al. (ADMX Collaboration), Phys. Rev. Lett. 120, 151301 (2018).