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The ultimate goal of the 6He experiment is to use the weak interaction, through beta decay, to
study Beyond the Standard Model Physics. By probing beta decay, we hope to investigate potential
chirality-flipping interactions, which are not allowed within the Standard Model (SM). By measuring
the energy spectrum of the beta decay of 6He extremely accurately using the Cyclotron Radiation
Emission Spectroscopy (CRES) technique developed by Project 8, we can look for these interactions
that are outside the SM. In order to do so, we need an accurate representation of the magnetic
field inside our magnet. This paper deals with the development of a multipole expansion model and
adaptation of a NMR probe and measurement device to measure the field in our magnet.

I. MOTIVATION

The Standard Model (SM) of particle physics is the
model that describes our current knowledge of the work-
ings of nature at its most fundamental level. However,
there are many theories that suggest that the SM is in-
complete, and there are missing elements that are Beyond
the Standard Model (BSM). The 6HeCRES experiment is
an experiment that is looking for chirality-flipping inter-
actions in the beta decay spectrum of 6He. The presence
of such interactions would promote the existence of ten-
sor currents, a BSM component present in the general
form of the interaction Hamiltonian. This experiment is
a precision measurement of the beta decay spectrum of
6He. It relies on a technique for measuring the energy
of the emitted electron using Cyclotron Radiation Emis-
sion Spectroscopy (CRES), a technique developed by the
Project 8 collaboration. [1]

In order to use this technique, the decay volume will be
placed inside a solenoidal superconducting magnet. The
magnetic field of this magnet must be known very pre-
cisely in order to accurately characterize the energy of
the beta particles emitted from the decay. This paper fo-
cuses on the preliminary work done to develop a magnetic
multipole expansion to describe the magnet that will be
used in the 6He experiment. It utilizes a Nuclear Mag-
netic Resonance (NMR) probe to measure the strength
of the magnetic field at particular coordinates within the
magnet. We also modified a gadget for placing the probe
and performed tests to accurately model the position of
the probe. This work will allow us to model the magnetic
field very accurately in the magnet.

II. THEORY

A. Helicity and Chirality

There are 2 components that are important to under-
standing the physics we are after. The helicity of a parti-
cle is the projection of its spin onto its momentum. This

can be written as:

H =
~p · ~s
|~p||~s|

= ±1 (1)

This quantity gives an important value for particles. For
massless particles (such as photons), it is invariant. How-
ever, for particles with mass, the momentum vector is
dependent upon the frame of observation and thus is not
invariant. Thus we define another quantity, the chirality,
which is invariant in all frames. One can express the chi-
rality of a left-handed, spin 1/2 particle in terms of the
two possible helicity eigenstates:

eL =

√
1 + p

E

2
eH=−1 +

√
1− p

E

2
eH=+1 (2)

With a similar expression (but with coefficients switched)
for eR. In the limit where m → 0, then by the relation-
ship E2 = p2 + m2 (using natural units) the coefficient
for eH=−1 approaches 1 and the coefficient for eH=+1 ap-
proaches 0, so it can be seen that for massless particles
chirality is the same as helicity.

According to the SM, chirality is conserved by the weak
interaction. Additionally, in the SM there are only left-
handed electrons and neutrinos that participate in beta
decay. However, if there are right-handed particles in
beta decay, there would be a small cross-term (eReL)
with chirality not conserved that comes from the inter-
action Hamiltonian. This small interference term would
have the form

eLeR =

√
1− (

p

E
)2 =

m

E
(3)

So we expect the interference term to be proportional to
m/E.

B. Interaction Hamiltonian

The interaction Hamiltonian allows us to model an in-
teraction of 2 particles. For an interaction of 2 particles
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FIG. 1: Top plot: the decay spectrum of 6He from the
SM. Bottom plot: Fierz interference term. Both are

plotted with respect to energy on the x-axis, and count
rate on the y-axis.

(weak or electro-magnetic interaction), the Hamiltonian
can be generated by [2]

H = j1µ(
1

q2 +M2
)jµ2 (4)

where jµ are bilinear currents and 1
q2+M2 is called the

propagator. q2 represents the square of the momentum
transfer, and M is the mass of the mediator for the in-
teraction. For nuclear beta decay, M >> q so the mo-
mentum dependence can usually be neglected.

In its full form, the interaction Hamiltonian for weak
interaction can be written as: [3]

Hint =
∑
i=V,A

(ψ̄pO
iψn)((Ci + C ′i)ψ̄

L
e Oiψ

L
ν +

(Ci − C ′i)ψ̄Re OiψRν ) +∑
i=S,T

(ψ̄pO
iψn)((Ci + C ′i)ψ̄

R
e Oiψ

L
ν +

(Ci − C ′i)ψ̄Le OiψRν ) (5)

The terms are dependent upon the type of bilinear cur-
rent. In this equation, the V-A terms (first summation)
are the vector and axial-vector currents, which are al-
lowed in the SM. The S,T terms are scalar or tensor cur-
rents. It is important to note that the S,T terms are
chirality-flipping components, and so are not allowed by
the SM.
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FIG. 2: Plot showing count rate versus energy for the
6He beta spectrum. Colors show our 6 GHz bandwidth
with different magnetic field values (red: 1T, green: 2T,

blue: 4T, pink: 6T)

C. Fierz Interference

In the Interaction Hamiltonian, there are some terms
that contain ψRe ψ

L
ν , which represent both right-and left-

handed particles. These can interfere with the SM-
allowed term (ψLe ψ

L
ν ), yielding a contribution to the de-

cay rate that is forbidden in the SM. This term is called
the Fierz interference term. It causes a small distor-
tion on the beta spectrum of 6He proportional to me/Ee,
which can be seen in Fig 1. [4]

This term can be seen in the decay rate equation:

dW ≈ dW0(1 + a
p̄e · p̄ν
EeEν

+ b
me

Ee
) (6)

Where b is the parameter that describes the Fierz in-
terference, which is proportional to the me/Ee from the
chirality flipping term. This term should have a mag-
nitude that can be described by the constants from the
Hamiltonian:

bFierz ≈
(CT + C ′T )

CA
(7)

By measuring the beta spectrum very accurately, we
would be able to observe this small deviation caused by
the chirality-flipping interactions, which is more signifi-
cant with smaller E. This would demonstrate the exis-
tence of tensor currents (CT and C ′T ), which is the BSM
physics we are after.

We plan to measure the spectrum of 6He very precisely,
using the Cyclotron Radiation Emission Spectroscopy
(CRES) method. CRES, which was developed by Project
8, uses a measurement of frequency to extract a value of
Ee. As the 6He decays within our magnetic field, the
emitted electrons rotate about magnetic field lines, thus
emitting cyclotron radiation. The frequency of this radi-
ation takes the form

ωc =
qBc2

Ee
(8)
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(a) Diagram of rotating B1

and stationary B0

(b) Diagram of precession
and rotation of a particle’s
spin as it flips at resonance

FIG. 3: Diagrams describing magnetization and spin
flip in NMR spectroscopy

The dependence of ωc on B means that in order to use
this technique, we need an accurate determination of the
magnetic field at all points in our magnet. In order to do
this, we have adapted an NMR probe to take accurate
magnetic field magnitude measurements.

When taking data, we will use a bandwidth of 6 GHz
(18-24 GHz range) as can be seen in Fig 2. By tuning
our magnet to different values, we can record data for
the entire beta spectrum.

D. NMR Techniques

Our probe that will be measuring the magnetic field at
different regions inside the solenoid operates on Nuclear
Magnetic Resonance (NMR) techniques. [4]

NMR spectroscopy is a method of experimentally
studying nuclear magnetism. Initially, a sample of par-
ticles with individual magnetic moments are placed in

a static magnetic field ~B0, which gives the sample a
net macroscopic magnetization. An additional oscillat-

ing magnetic field, ~B1 is applied, oriented perpendicular
to the main field. This field can be pictured as a field
rotating at a frequency of ω in the lab frame, as can be
seen in Fig 3a. At resonance, this perturbation causes
the magnetization of the sample to flip, which gives a
signal that can be translated to a magnetic field strength
[5].

In the lab frame, the rate of change of the magnetic
moment can be modeled with the equation

~M

dt
= γ ~M × ~B (9)

If we change to a frame that is rotating at the frequency
ω, causing B1 to be along the x̂ axis, this can be rewritten
as

∂ ~M

∂t
= γ ~M × ~Be (10)

FIG. 4: Modification of our probe. The device in dark
blue was added to the probe setup in order to make the
device the correct length for our magnet.The light blue
outline is our magnet, and the red is the probe device.

with a stationary effective B-field

~Be= ~B +
~ω

γ

= k̂(B0 +
ω

γ
) + î(B1) (11)

This stationary Be field causes motion that is precession
around Be in the rotating frame. In the lab frame, this
motion is precession combined with the rotation rate of
the moving frame to the lab frame. This motion traces
a path as can be seen in Fig 3b.

III. MAGNETIC MODEL

In order to use the CRES technique, we need to know
the magnetic field of our magnet extremely accurately at
all points. To do this, we modified an NMR probe that
will be used to collect magnetic field values. We then
developed a multipole expansion code to model the mag-
netic field inside our solenoid. We also used a theodolite
to perform position measurements to check the accuracy
of our dials and map the position of the probe. All of
these aspects will be used to determine the magnetic field
that our decay volume will be placed in for the experi-
ment.

A. Modifying the Probe Apparatus

We have a probe device, which allows us to place the
NMR probe at different locations inside our magnet. Our
probe device has the capability to move in 3-dimensions,
which generally correspond to cylindrical coordinates,
and allows us to set the probe to multiple locations within
the region where our decay volume will be. The first is
horizontal (ẑ) motion, controlled by turning a dial on the
end of the device. The second and third are two disks,
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larger and smaller, which control the angular position of

the probe within the magnet (θ̂) and the radius of the
probe (r̂).

This probe was initially designed for a different, verti-
cal magnet, not our horizontal one. For this reason, we
added an extension to the original apparatus, since the
probe was initially too long for our magnet. This way,
the probe would be centered at z = 0 horizontally. This
modification can be seen in the diagram in Fig 4.

B. Spherical Harmonic Solutions

For our model we aim to find a solution to Maxwell’s
equations for our magnet that can be expanded in the
form of a magnetic multipole. In the case where there
are no enclosed currents in our region of interest, we can
write B in the form[6]:

B = ∇φm (12)

Which gives Laplace’s equation:

∇2φm = 0 (13)

Solutions for φm can be written as a Taylor expansion
to find all of the terms. These terms are of the form of
spherical harmonics (Y ml )[7].

φm =

∞∑
l=0

l∑
m=−l

(aml r
l + bml r

−(l+1))Y ml (14)

We transformed these spherical harmonics into Carte-
sian form, according to the table from [8] (see Appendix
A). Because our magnet is primarily a superconducting
solenoid, its magnetic field is predominantly in the ẑ di-
rection, so these polynomials were used to expand the
potential function. This gives 25 linearly independent
terms to be fitted by the program.

C. Linear Least Squares

A linear least squares fit was used in order to fit each
of the parameters given by the polynomial terms in order
to find Bz[9]. Linear least squares utilizes linear algebra
to model the relationship between an equation and a set
of parameters, such that

yi(x) =

M∑
k=1

akXk(x) (15)

Here, Xi are the functions of position, in this case Carte-
sian harmonic polynomials, yi are the values of the mag-
netic field (Bz) for each point i and ak are the parame-
ters to be fitted. These Xi are given in [8], and can be
explicitly seen in Appendix A: Table I. [9] shows this
method for one dimension. However, here we make the

substitution for 3 dimensions: Xk(x)→ Xk(~x). This can
be proven to be a mathematically valid substitution, as
long as the functions Xk are a linearly independent set
of functions.

We can then define a function for χ2, as

χ2 =

N∑
i=1

[
yi −

∑M
k=1 akXk(~xi)

σi
]2 (16)

where σi are the measurement error for the ith data
point. When optimized, this equation will give values
for the parameters ak.

We can define a matrix A, called the design matrix,
which describes the functions Xi(~xi) that we want to fit
to. This design matrix can be written as:

Aij =
Xj(~xi)

σi
(17)

In order to optimize the equation for χ2, one can define
two matrices, α and β, such that

αkj =

N∑
i=1

Xj(~xi)Xk(~xi)

σ2
i

= AT ·A (18)

βk =

N∑
i=1

yiXk(~xi)

σ2
i

(19)

Using a proof from linear algebra[9], we find that the pa-
rameters ak and their uncertainties σ2(aj) can be found
by performing the matrix operations [9]:

ak = [α]−1[β] (20)

σ2(aj) = [α]−1jj (21)

The code to find these parameters for a given set of
data points was written as a ROOT macro script. Us-
ing ROOT, we are able to clearly define matrices, and
do matrix operations easily. The code takes an input of
data as a text file with the number of data points taken,
the position vector in Cartesian coordinates, and the field
value Bz at that particular position. It then prints to the
screen values for the coefficient for each of the polynomi-
als ak. The full code using this method can be seen in
Appendix B.

For [α]−1, the code uses a Singular Value Decomposi-
tion method to ensure that there is no singularity within
the matrix α. This ensures that the values for ak found
by the program are the true minimum, and that if one or
more values are irrelevant to the fit it is driven to a very
small number rather than towards canceling infinities, as
often happens if a matrix is singular (or nearly singular)
[9].

D. Position Mapping using a Theodolite

To ensure that the values read from the dials are ac-
curate and the position measurements are repeatable, a
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(a) z = −1 (b) z = 0 (c) z = +1

FIG. 5: Graphs of average position values for particular r-values. The data and their mean radius are color coded
(blue: φ2 = 0; yellow: φ2 = 30, green: φ2 = 60; red: φ2 = 100; purple: φ2 = 180)

FIG. 6: Diagram of the geometry of the NMR device.
The smaller circle allows the user to set the radius of

the circle mapped by the device, in this case labeled d2.
The large circle sets the angular position of the probe.

theodolite was used to map the position of the probe.
This device allows us to make an accurate (x, y) position
measurement, and interpolate from there to map the po-
sitions of the probe. A diagram detailing the geometry
of the setup can be seen in Fig 6.

If the construction of the apparatus, the relation be-
tween the angles and radii would be described by the
geometry shown in Fig 6. Then, the (x, y) position coor-
dinates of the probe should be given by:

x= d2cos(φ1)

= 2R2sin(
φ2
2

)cos(φ1) (22)

y= d2sin(φ1)

= 2R2sin(
φ2
2

)sin(φ1) (23)

However, due to inaccuracies in the construction we
decided to make to tables mapping the coordinates read
by the values on the dials to the (x, y, z) coordinates that
describe the probe’s actual position. The full map that
we created for our data sets can be seen in Appendix C:

Table III. We took data for a set radius d2, obtained by
fixing φ2 from 0 < θ < 2π. We did this 3 times for each
set value of d2. We then moved to the next value of d2.
For the first run, we had the probe set at z = −2.0125 cm,
and went through 7 values of θ from 0 to 2π, incremented
evenly in values of 30 degrees for φ2. This was a good
troubleshooting run, which gave us an idea of what the
data would look like.

The next data sets that we took were for z = −1, 0,+1,
which is where our decay volume will be, so it is the
region of most interest and value to us. For these, we
decreased the number of radii that we took data at, by
evenly distributing the radii of the trials. We took data at
φ2 = 0, 30, 60, 100, and180 degrees. The maximum radius
for d2 is 760 mils, so these φ2 values correspond to d2 = 0,
197(≈ d2,max/4), 380(d2,max/2), 582(≈ d2,max∗3/4), and
760 mils.

From these data sets, we averaged points at the same
φ1 value. We calculated the average radius, maximum
radius, and model radius d2. We then calculated the
difference between the mean radius and the maximum
radius, and the difference between the mean radius and
model radius. These values can be explicitly seen for the
z = 0 case in Appendix D: Table II. The rmean − rmax
and rmean − rmodel provide us with 2 different estimates
for error. Minimizing both of these errors allows us to
have an accurate position measurement for the data sets.

IV. DISCUSSION

Plots showing the average radius overlaid over the av-
erage of 3 trials for each r-value can be seen in Fig 5.
These plots show good agreement between the points and
the average radii. However, there are some discrepancies
that can be seen in these values. The first would be
that the blue data points and circle correspond to set-
ting r = 0 (φ2 = 0) on the device. The radius measured
from our data when r is set to 0 is about 2 mm. This
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FIG. 7: Data for z = 0, φ2 = 30. Circled in red are the
2 points around the turning point, which could point to
a jump in the data, potentially caused by hysteresis in

the horizontal dial.

has the largest deviation from expected value of all of our
points. However, other values for φ2 were much closer to
the expected values. This shows that the values that are
in the middle of the radius range are more similar to the
model than those at either of the extremes.

Another element that most likely contributed signifi-
cantly to our error was the hysteresis of the horizontal
dial. Because the θ motion of the probe inscribed a full
circle, it is impossible to take all the data with motion in
a single direction: there must be 2 turning points, where
the direction of motion in the horizontal axis must change
direction. Prior to beginning the position mapping, I per-
formed tests to determine the amount of hysteresis in this
dial. It moved an average of 37 mils without changing the
position of the device. In order to mitigate this, when-
ever I needed to change dial direction I moved it between
200 and 300 mils in the same direction, changed direction
and moved it 200-300 mils back.

Ideally, this should have minimized the hysteresis en-
tirely. However, there is a feature in my data that can
be seen near this turning point. It is shown in Fig 7 for
the z = 0, φ2 = 30 case. Between these 2 circled points I
had to change the dial direction. Because these measure-
ments are on a circle, it is impossible to take data for all
points without changing the direction of the dial at least
once. For most of the trials, φ2 = 0 was at a turning
point, so I was able to use only one turning point rather
than 2. But this turning point may have contributed
some systematic error in my data. φ2 = 30 is the most
obvious jump in the data sets, and the jumps are less
severe as φ2 is larger.

This error is not present in the φ2 = 0 data set, since
there is a separate dial that is more accurate with a range
of -100 to +100 mils that could be used for this data
set, since its radius was less than 100 mils. Thus even
though this data set has the highest observed deviation
from expected value from the model, it has the lowest
uncertainty from the theodolite, because it uses a more
accurate dial. All other data sets had a radius too large

to use this more accurate dial measurement.
Even with this error, it is important to note that the

main reason for performing these tests is to ensure that
our position results are reproducible. Between trials,
there was very little deviation (usually ±20 mils at most),
which leads us to believe that despite the small offset the
position of the device is still reproducible. If we could
remove this error, the value for rmax − rmean would be
reduced significantly, which would improve our error.

It can also be seen in our graphs for each z = −1, 0,+1
case (Fig 5) that the positions of the average points them-
selves are almost identical between plots. This also points
to the reproducibility of our data. The radii found for
each value of φ2 (refer to Appendix D Table II) are also
almost identical for each value of z. This is what we want,
since r and θ should be independent of z. Overall, de-
spite the error that we found, our values agree fairly well
with the model values. The data set with φ2 = 60, with a
value of d2 = d2,max/2, had the greatest agreement with
the expected values.

V. FUTURE WORK

This project is in its initial stages. 6HeCRES is an on-
going experiment. For followup with this specific project
(mapping the magnet) there is still some work that can
be done. It would be beneficial when taking NMR data
from the probe to completely automate the data collec-
tion process. Currently, all of the dials are still being
turned by hand. It would reduce error if this process
could be automated.

By the same idea, when data collection takes place, it
would be helpful to directly hook the Teslameter, which
is the device taking NMR readings from the probe, to
a computer with a LabView program running. We at-
tempted this, but were unsuccessful, but this would al-
low us to fully automate the entire data collection pro-
cess, and possibly output to the format needed in ROOT
more easily.

The multipole model is also still a work in progress. It
does take an input of data in 3 dimensions, but only con-
siders aspects of Bz since we expect the field to mostly
be that of a solenoid. It would be ideal, however, to also
consider the Bx, By solutions in the final version. This
would allow us to incorporate all 35 linearly independent
solutions outlined by [8], rather than the only 25 com-
ponents that are linearly independent when only Bz is
considered.
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Appendix A: Table of Spherical Harmonics

Table I shows the Cartesian spherical harmonics as
they appear in the code [8]. The terms have different
orders of magnitude determined by Equation 14. The
horizontal lines represent different orders of magnitude
for The dipole term is r0, the quadrupole terms are r1,
the sextupole terms are r2, octupole terms are r3, and
decupole terms are r4. Note that indexes (n) start at 0
to correspond to the code, since C + + indexes always
begin at 0.

n Pn,z(x, y, z) name

0 1 dipole

1 −z skew quad
2 x norm quad
3 y

4 −2xz skew sext
5 −2yz
6 x2 − z2 norm sext
7 xy
8 y2 − z2

9 z3 − 3x2z skew oct
10 −6xyz
11 z3 − 3y2z norm oct
12 x3 − 3xz2

13 3x2y − 3yz2

14 3xy2 − 3xz2

15 y3 − 3yz2

16 4xz3 − 4x3z skew decu
17 4yz3 − 12x2yz
18 4xz3 − 12xy2z
19 4yz3 − 4y3z
20 x4 − 6x2z2 + z4 norm decu
21 x3y − 3xyz2

22 3x2y2 − 3x2z2 − 3y2z2 + z4

23 xy3 − 3xyz2

24 y4 − 6y2z2 + z4

TABLE I: Table of spherical harmonic solutions, consid-
ering only terms for Bz, with index number (for ROOT
macro) and naming conventions to show orders of mag-
nitude.

Appendix B: Code for Multipole Expansion

Below is the code written to determine the multipole
moments that characterize our magnet. This code is writ-

ten as a ROOT macro, and uses a Linear Least Squares
method.The TMatrixD class in ROOT is used to allow
us to explicitly declare matrices and use them through-
out the program.The design matrix (”void designmatrix‘’
function) uses the Cartesian spherical harmonics from [8]
found in Appendix A: Table I. The code is commented
(denoted in C++ by //) to describe individual parts.
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Since the code was still at the testing phase, the data
read in the file ”data.txt” was generated by another
macro with a Gaussian distributed error added. When
this data was created, an uncertainty of 0.1 was assumed
for each data point, and the Gaussian error was within
this range given to this program. The uncertainties in pa-
rameters are given in the function void parameter unc,
and follow the derivation given in [9]. The final function
in the code, void print values, shows the values that the
code found for each of the parameters.

The code prints the fitted parameters, as well as the
chi-squared value for the data set. This chi-squared value
seems very high, so this part of the code may need more
work. The parameters a k found in the code are entirely
arbitrary and were intended to test the accuracy of the
fitting function. An example of the output that the code
gives when run in ROOT can be seen in Fig 8.

FIG. 8: Output from the code when run in ROOT



9

Appendix C: φ Values and (x, y, z) Coordinates

Because our apparatus may have had some small in-
consistencies in its construction, we decided to create a
map of the position coordinates (x, y, z) rather than read-
ing the values directly from the dials. These values are
reported as distances from the center of the device, and
show the readings on the dials, and the positions these
values actually correspond to. These values represent an
average from 3 trials of data taken for each value of φ2
(refer to geometry given in Fig 6). The full map of values
can be seen on the next page, in Table III.

Appendix D: Average values and model comparison

The average values of our data show the deviation from
the model that we are finding in our data. This data
shows the mean radius (ravg), maximum radius (rmax),
model predicted radius (rmodel). These were calculated
using Mathematica. Table II explicitly shows the results
of these calculations. All r-values are in mm (converted
from mils) and all φ values are in degrees.

z = 0

φ2 ravg rmax rmodel rmax − ravg ravg − rmodel

0 2.117 2.349 0. 0.269 2.117
30 5.832 6.649 4.996 0.922 0.836
60 9.635 10.911 9.652 1.451 0.017
100 13.906 15.498 14.788 1.840 0.881
180 17.738 18.957 19.304 1.522 1.566

z = +1

φ2 ravg rmax rmodel rmax − ravg ravg − rmodel

0 2.251 2.531 0. 0.321 2.251
30 5.771 6.598 4.996 0.933 0.775
60 9.542 10.866 9.652 1.498 0.110
100 14.105 15.716 14.788 1.863 0.683
180 17.814 18.986 19.304 1.476 1.490

z = −1

φ2 ravg rmax rmodel rmax − ravg ravg − rmodel

0 2.177 2.432 0. 0.293 2.177
30 5.909 6.851 4.996 1.052 0.913
60 9.626 11.022 9.652 1.572 0.026
100 13.959 15.626 14.788 1.917 0.828
180 17.852 19.183 19.304 1.639 1.452

TABLE II: Table of average values for radius traced out
by the probe device for z = 0,+1,−1, as well as the
value for rmodel which is predicted by the geometry of
the device.
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φ2 = 0 φ2 = 30 φ2 = 60 φ2 = 100 φ2 = 180
φ1 z x y φ1 z x y φ1 z x y φ1 z x y φ1 z x y
0 0 -0.2761 -2.1343 0 0 5.0136 2.0125 0 0 8.4468 -0.1368 0 0 11.3961 -5.4056 0 0 4.7244 -15.3833
0 1 -0.1495 -2.2590 0 1 4.7755 2.1948 0 1 8.1544 0.2475 0 1 10.8370 -5.8811 0 1 4.5346 -15.1879
0 -1 -0.0033 -2.1447 0 -1 5.3461 2.2144 0 -1 7.9802 -0.3387 0 -1 10.8377 -5.5099 0 -1 4.6511 -15.2530

30 0 1.1674 -1.71943 30 0 5.6147 -0.6969 30 0 6.7789 -4.9628 30 0 6.5193 -10.4856 30 0 -3.9497 -15.7219
30 1 1.3745 -1.8441 30 1 5.1989 -0.9378 30 1 6.6727 -4.4939 30 1 5.9602 -10.9611 30 1 -4.2623 -15.6112
30 -1 1.2244 -1.6451 30 -1 6.0530 -0.8336 30 -1 6.5324 -4.7413 30 -1 6.2699 -11.0978 30 -1 -4.2939 -15.6764

60 0 2.1200 -0.7330 60 0 3.7690 -3.4062 60 0 3.4557 -8.4341 60 0 0.0762 -13.1103 60 0 -12.2089 -11.9119
60 1 2.3228 -0.7942 60 1 3.8823 -3.3932 60 1 3.4596 -8.0499 60 1 -0.3729 -13.3317 60 1 -12.2887 -11.8012

60 -1 2.2065 -0.7350 60 -1 3.3649 -3.5430 60 -1 3.4463 -8.1280 60 -1 -0.2494 -13.1298 60 -1 -12.4515 -11.8664

90 0 2.3316 0.5073 90 0 1.4152 -5.5229 90 0 -1.2264 -9.5348 90 0 -7.2559 -12.2636 90 0 -17.6615 -4.8000
90 1 2.4837 0.6663 90 1 1.4481 -5.5945 90 1 -0.8711 -9.5739 90 1 -7.2647 -12.0617 90 1 -17.7116 -4.6046
90 -1 2.4182 0.5054 90 -1 0.9645 -5.3210 90 -1 -1.0157 -9.5673 90 -1 -7.2471 -12.1138 90 -1 -17.7813 -4.6697

120 0 1.6289 1.4048 120 0 -1.6074 -5.8615 120 0 -6.0312 -8.3494 120 0 -12.7423 -7.7763 120 0 -18.8214 4.0901
120 1 1.7301 1.5468 120 1 -1.3882 -5.9332 120 1 -5.8199 -8.4732 120 1 -13.0178 -7.5744 120 1 -18.8080 4.2854

120 -1 1.7493 1.4918 120 -1 -1.7025 -5.9136 120 -1 -5.9475 -8.2973 120 -1 -12.8732 -7.6265 120 -1 -19.0090 4.3050

150 0 0.8203 2.0187 150 0 -4.4860 -4.9302 150 0 -9.6041 -4.7934 150 0 -15.7141 -1.0030 150 0 -13.8091 12.7261
150 1 0.9216 2.0844 150 1 -4.3346 -4.7479 150 1 -9.6087 -4.8325 150 1 -15.9431 -0.8857 150 1 -13.8423 13.0061

150 -1 0.8773 2.0887 150 -1 -4.7420 -4.7283 150 -1 -9.8337 -4.9107 150 -1 -15.8577 -0.7685 150 -1 -13.8316 13.0256

180 0 -0.2338 2.3362 180 0 -6.2852 -2.4749 180 0 -11.0858 0.1172 180 0 -13.5086 6.2784 180 0 -6.0410 17.8061
180 1 -0.4881 2.4104 180 1 -6.2015 -2.5465 180 1 -11.0396 0.07815 180 1 -13.4835 6.7343 180 1 -5.8879 18.0861
180 -1 -0.2276 2.2453 180 -1 -6.4861 -2.5270 180 -1 -11.1968 0.1693 180 -1 -13.2415 6.5128 180 -1 -5.8221 18.1056

210 0 -0.9450 1.7943 210 0 -6.5773 0.3191 210 0 -8.4865 5.0279 210 0 -8.6741 11.9510 210 0 3.7084 18.5681
210 1 -1.1274 1.9236 210 1 -6.5275 0.4168 210 1 -8.7451 4.9888 210 1 -8.5728 12.3223 210 1 3.8064 18.6788
210 -1 -1.0235 1.8262 210 -1 -6.7825 0.2670 210 -1 -8.5976 5.1647 210 -1 -8.3986 12.1855 210 -1 3.9484 18.6983

240 0 -1.3302 1.1000 240 0 -4.2278 3.5365 240 0 -4.7146 8.5839 240 0 -1.4732 14.4064 240 0 11.7560 14.7581
240 1 -1.5126 1.0473 240 1 -4.1356 3.3802 240 1 -4.8081 8.2908 240 1 -1.2111 14.6929 240 1 12.1715 14.4454
240 -1 -1.3664 1.1108 240 -1 -4.2763 3.3150 240 -1 -4.7495 8.3820 240 -1 -1.2654 14.5562 240 -1 12.2415 14.5496

270 0 -1.7959 0.0374 270 0 -2.1365 4.9758 270 0 0.3103 9.5999 270 0 6.0621 13.0517 270 0 16.8995 7.2227
270 1 -1.9275 0.0863 270 1 -2.3026 4.9042 270 1 0.0391 9.3915 270 1 6.4089 13.2536 270 1 17.5182 6.9101
270 -1 -1.9718 -0.1254 270 -1 -1.9438 4.8390 270 -1 0.2289 9.4827 270 -1 6.2403 13.1168 270 -1 17.5247 6.7603

300 0 -2.0457 -0.8643 300 0 0.7125 5.4838 300 0 4.4040 8.1606 300 0 11.3580 8.1410 300 0 17.1365 -2.0906
300 1 -2.0883 -1.0694 300 1 0.7793 5.5815 300 1 5.0090 8.1215 300 1 11.7218 8.0043 300 1 17.7976 -2.4879
300 -1 -2.1538 -0.8450 300 -1 0.8545 5.3470 300 -1 5.1100 8.2973 300 -1 11.6081 8.2062 300 -1 17.7364 -2.4684

330 0 -1.3387 -1.6813 330 0 3.4007 4.5525 330 0 8.3494 4.7739 330 0 13.0133 1.5370 330 0 13.3054 -10.1339
330 1 -1.3687 -1.7933 330 1 3.5013 4.3962 330 1 8.0485 4.6502 330 1 13.6098 1.4003 330 1 12.4001 -10.4466
330 -1 -1.5103 -1.7467 330 -1 3.7035 4.5850 330 -1 8.4204 4.826 330 -1 13.5343 1.1788 330 -1 12.3219 -10.4270

TABLE III: Tables showing the dial settings (φ1 and φ2) and their respective (x, y, z) coordinates. Note that z is
both the z-coordinate and the dial reading.


