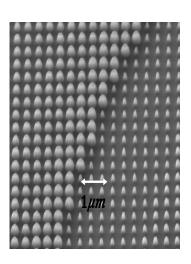
Designing Metasurface Optics

Laura Owens¹ Mentor: Arka Majumdar²

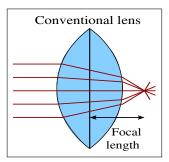
¹Bucknell University

²University of Washington


August 15, 2018

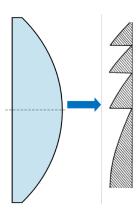
Outline

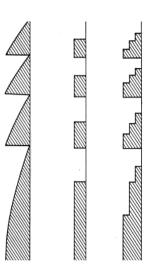
- Intro to metasurfaces
- Problem with traditional refractive optics
- Diffractive optics and metasurface approach
- Designing u shaped scatterers
- Simulating metasurfaces
- Continuing work


Metasurface (MS) Introduction

- Subwavelength diffractive optics
 - No higher order diffraction
- Periodic array of scatterers
- Arbitrary phase transformations
- Currently our lab works with cylindrical scatterers

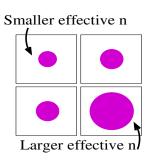
Problems with Traditional Optical Elements


- Depends on shape and extent of optics
- Electronics miniaturization limited by optics size
 - ► The Internet of things
 - Alternate and virtual reality
- ► Focal length lower limit
- ► Single function

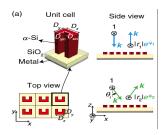

Diffractive Optics

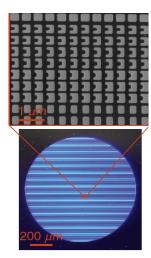
- Transforms light through diffractive effects
- Smaller than traditional refractive optics
- Curvature imparts different phase transformation to different points on lens
 - Unable to fabricate e beam lithography

Metasurface Solution to Curvature


- Stepped height has similar performance and fabrication concerns
- ► Want constant thickness optics
 - Easy to fabricate structures

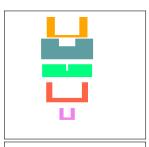
Metasurface phase transformation


 Effective refractive index achieved by varying in plane scatterer dimensions


Lenses on the scale of tens to hundreds of μm radius and thickness of a few μm

My Contribution: U Shaped Scatterer MS

- Multi functionality demonstrated by Andrei Faraon's lab
 - Different phase shifts for different incident angles
- Coupled cavities with u shaped scatterer metasurface mirrors


Faraon group: Angle-Multiplexed Metasurfaces

Simulation of Metasurface

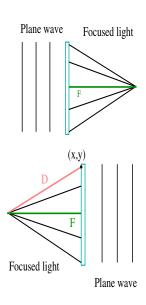
- ▶ No closed form solution to Maxwell's equations
- Trial and error simulation
- Simulation process includes:
 - Initial dimension scanning simulation
 - Phase to dimension mapping
 - ► Final MS design simulation

Rigorous Coupled Wave Analysis (RCWA)

- Assumes constant scatterer dimension
- Wavelength, angle, and scattering shape specific
- Outputs phase and transmission with corresponding scatterer dimensions

Phase Profile

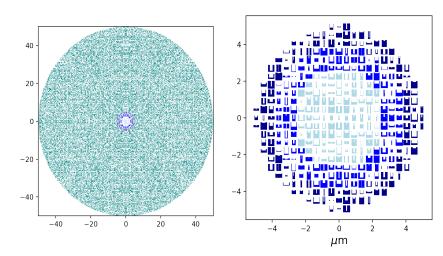
 Find desired phase at each point on surface and map to dimension


$$E = E_0 e^{i\varphi}$$

$$\varphi = kx - wt$$

$$\varphi = kD$$

$$\varphi = k\sqrt{F^2 + x^2 + y^2}$$


 Minimize the difference between the ideal and simulation phases

Simulation Parameters and MS Design

- ▶ 800,000 u dimensions
- ▶ 30,000 lattice points

► Normal incidence, 45 degree reflection

Finite Difference Time Domain Simulation

- Final simulation to test metasurface layout
 - Uses a leapfrog approach to solve time dependent Maxwell's equations
 - Much longer runtime
 - Does not assume uniform scatterers
- Last step before designing mask for fabrication

Future Work

- Complete MS design check in FDTD
- Fabricate metasurface and test the reflection and focusing power
- ► Further explore the multi functional capabilities of u scatterers

Acknowledgements

- Dr. Arka Majumdar, Albert Ryou, James Whitehead, and Luocheng Huang
- NSF and the UW INT REU Program
- Deep, Gray, Linda, and Cheryl