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A method to calculate and implement Debye-Waller factors more efficiently when computing x-
ray spectra is proposed. Utilizing inverse sampling methods, we accurately produce Monte Carlo
simulations of thermal motion allowing us to account for temperature dependencies in x-ray spectra.
This eliminates the need for previous approximation and accounts for more spectral features such
as symmetry-split peaks.

I. INTRODUCTION

X-ray absorption spectroscopy is a popular and pow-
erful technique for probing condensed matter systems. It
has successfully contributed to fields ranging from ma-
terials science to physical chemistry. Due to its impor-
tance as an experimental technique, it is of great inter-
est to develop computational methods of producing ac-
curate x-ray spectra to compare to experimental spectra.
However, due to x-ray spectra probing many body in-
teractions, there are many complex factors that must be
considered when developing a computational model. In
particular, damping coefficients known as Debye Waller
(DW) factors characterize an x-ray spectra’s tempera-
ture dependence as they are directly related to the ther-
mal motions and vibrations of the sample. As opposed to
DW factors for x-ray and neutron diffraction, which deals
with the mean-square displacements of a given atom, DW
factors for x-ray absorption near edge structures (XAFS)
refer to the average over relative displacements[1]. By
knowing a spectra’s DW factors, a computed spectra
would have the proper temperature dependence as well
as proper intensity dampening compared to experimental
result. Therefore it is essential to have an accurate and
efficient method to include DW factors when computing
an x-ray spectra.

Previously[2], XAFS DW factors were calculated us-
ing density functional theory calculations of the dynam-
ical matrix of the system. Combining the calculations
with a Lanczos algorithm for projected photon spectra
within quaisharmonic approximation, this method pro-
duces stable results of calculated DW factors typically
within ±10%. Although this method produces accurate
DW factors, our current method requires these factors to
be calculated over a variety of dimensions which becomes
increasingly expensive to compute. Rather than compute
the entirety of ranges required to produce the spectra,
sampling the ranges to an accuracy specified is much
more advantageous. Similar to how Monte-Carlo inte-
gration can converge to an answer faster than other nu-
merical methods, given the integrated function is smooth,
sampling coordinates with proper thermal distortions can
converge to an accurate spectra faster than a spectra cal-
culated from DW factors. In this project, we demon-
strate that this sampling technique generates agreeable

DW factors to that of the DFT-Lanczos method for a
variety of polyatomic atoms including F2O, Br2, OCCl2,
and SF6. We also demonstrate that this new method is
able to efficiently generate coordinates in accordance to
the proper distribution. These coordinates will then be
used to generate many spectra which will be averaged to-
gether to generate one complete, accurate, and averaged
x-ray spectra with the proper thermal distortions.

II. THEORY

A. Inverse Transform Sampling

Inverse transform sampling is a popular technique to
generate pseudo-random numbers on a known probabil-
ity distribution. By generating a random sample, p, be-
tween 0 and 1, we are able to represent p as a probability
and create an x on the domain P(x) such that the sum
between P(-∞) and P(x) is equal to p.

Therefore, by integrating our probability density we
are able to generate our cumulative density function
which we use to map our uniform distribution to. This al-
lows us to generate random samples according to any dis-
tribution, including a probability distribution that cap-
tures proper thermal motions.

Under the Born-Oppenheimer approximation, we are
able to separate the wave-function of our molecules into
vibrational and rotational components[4]. This means
the electrons and nuclei movement are separate and can
thus treat each movement independent. Therefore, when
considering accurate depiction of thermal motion be-
tween our molecules, we need only consider vibrational
normal modes. When our system is simply a diatomic
molecule, the harmonic oscillator approximation with
mode n fits exactly
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where µ is the reduced mass of the particles, ω is the
frequency associated with the normal mode, ~ is Planck’s
constant, and Hn(x) are the hermite polynomials.

When we elevate to a polyatomic system we justify
that vibrational normal modes are still in this harmonic
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oscillator approximation so long as we are within the
binding energy region of our atomic Morse Potential.
[4] It becomes more convenient to write equation 1 in a
way that is mass-dependent to avoid any confusion with
what a polyatomic reduced weight may be. Substituting
q =
√
µx, equation 1 can be rewritten as
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This way there is no mass-dependence when constructing
our probability amplitudes and we are sampling in mass-
weighted coordinates q. In order to sample in real-space
coordinates, we will utilize a dynamical matrix with the
proper weighting to calculate displacements in real-space.

In order to account for the thermal properties of our
probability distribution, we use a Bose-Einstein distri-
bution to determine the occupancy levels at which our
system will occupy[4].

qvib =
e−βhv/2

1− e−βhv
(3)

This allows us to determine the proportion of our
atoms’ occupancy levels and multiply these proportions
to construct a full probability density. As temperature
varies, our atoms will have a different probability to
occupy various n levels which correspond to different
wave-functions. Summing and normalizing these wave-
functions and squaring our wave-functions will generate
the proper probability distribution of atoms’ positions.
Integrating this probability density can be done numeri-
cally generating the cumulative density function needed
to perform the inverse sampling.

B. Dynamical Matrix

Using the inverted transform sampling method, we are
able to generate pseudo-random probability amplitudes
according to an atom’s probability distribution. These
distributions correspond directly with the vibrational
normal modes needed to simulate proper DW factor when
constructing x-ray spectra. We then construct a matrix
of force constants for each atom in our system[2]. These
force constants correspond to various normal modes of
motion, including vibrational normal modes, and are con-
structed in detail by [5]. The dynamical matrix can then
be used to generate the vibrational normal mode frequen-
cies of our system. [2] These frequencies are used in equa-
tion 2 to calculate the proper probability amplitudes, p,
used. The dynamical matrix also allows us to generate

displacement vectors ~d that follow the path of vibration
and when multiplied by our probability amplitude, sim-
ulates random vibrations of our particle. Summarized

below, we are able to generate sampled coordinates ~Q′

if we add our sampled displacements to some original

coordinate ~Q also generated by the dynamical matrix.

~Q′ = ~Q+ ~dp (4)

By randomly generating a large number of p, we can
generate a large number of sampled coordinates. These
coordinates, per particle, will represent new positions of
an atomic system that can be used to generate a large
number of XANES spectra. We can thus average the in-
tensities of our XANES spectra to simulate a XANES
spectra of a vibrationally averaged system generating
more accurate spectra.

III. METHOD

Although Monte-Carlo simulation of thermal motion
can generate spectra quicker than other methods that
try to simulate thermal motion, it would not be of any
use if they were not accurate. In order to ensure accu-
racy, we will generate DW factors using our randomly
generated coordinates and compare them to computa-
tionally calculated DW factors [2]. DW factors in XAS
arise from a thermal and configurational average of the
spectra over the pair distribution function. If the effect
of the vibrations on a normalized XAS spectra is domi-
nated by the average over the oscillatory behavior of the
multiple scattering path, the DW factors depend only on
the path-length distribution. Detailed in [2], we can then
model our DW factors as

σ(2) =
〈
(r − ~r)2

〉
≡ σ2(T ) (5)

where r is the relative bond length between our atoms.
This is easily achieved as we are generating coordinates
representing our atoms’ positions. We then simply have
to find the distance between the two atoms and we do this
for each pair of atoms to generate DW factors per path.
Using the previous DFT-Lanczos method, DW factors
were calculated using the Debye integral
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where µR is the reduced mass associated with that path,
β = 1/kbT , and ρR(ω) is the vibrational density of states
projected on R. Comparing these two methods should
generate DW factors that agree with each other. The
former being a new method taking advantage of our sam-
pled coordinate and will have an error of

√
N , where N

is the number of samples we take and the latter being
the method used by DFT-Lanczos formulation.

In order to generate our x-ray spectra, we will cre-
ate FEFF9 input files using extracted subroutines from
CORVUS [7]. FEFF currently uses real space Green’s
functions approach and calculated DW factors to pro-
duce x-ray spectra. If we provide FEFF with our sam-
pled coordinates, there shouldn’t be a need to provide
calculated DW factors as our sampled coordinated will
be used to create a vibrationally averaged spectra that
has DW factors built into the coordinates. Our main re-
sults will therefore be the comparisons between the two
methods of calculating DW factors, and the qualitative
comparison of x-ray spectra produced by both methods.
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IV. RESULTS

A. Calculated DW Factors

Results produced from this method are compared
against theoretical DW factor calculations. Shown in ta-
ble I, are DW factors calculated using both methods as
well as the corresponding paths used to compute them.
All ranges of temperatures calculated match within the
margin of error suggesting our method to calculate DW
factors is correct. Furthermore, with this Monte-Carlo
sampling method, we can increase our number of sam-
ples to have as fine of an accuracy as we want.

10−3 Å2 DWF (DFT) DWF (Expt)

1.320 1.384
2.675 2.777

OCCl2 2.675 2.760
T = 1K 2.516 2.525

2.516 2.545
2.858 2.958

1.320 1.377
3.242 3.315

OCCl2 3.242 3.203
T = 300.75K 2.764 2.825

2.764 2.778
4.457 4.452

1.638 1.712
9.143 9.312

OCCl2 9.143 9.055
T = 1200K 6.586 6.686

6.586 6.586
15.060 14.784

2.079 2.134
F2O 2.079 2.118

T = 1K 3.484 3.288

2.134 2.125
F2O 2.134 2.169

T = 300.75K 3.924 3.937

3.583 3.848
F2O 3.583 3.616

T = 1200K 9.367 9.296

TABLE I. Theoretical calculations of DW factors. While
DFT-Lanczos method has roughly ±10% error, our method
has an error of 1/

√
N where N for each trial is 1000 samples.

We show both OCCl2 and F2O as representative sam-
ples for this method because demonstrating this tech-
nique on diatomic molecules is too simple to demonstrate
we operate in the quasi-harmonic region. Furthermore,
if we calculate DW factors on polyatomic atoms and
these factors do not vary in accuracy, we can eventu-
ally apply this technique to large atom structures such
as copper lattice structures or a zirconium tungstate sam-
ple. It also appears that as we increase in temperature
range, our results show some deviancy as this may be
explained that such a high temperature no longer allows

us to assume the atom remains in its Morse Potential.
This would negate our harmonic approximation as the
sampling would capture outside of this region. Overall,
however, our DW factors calculated from this sampling
method agree with previous DW factor calculations rat-
ifying our sampled coordinates as an accurate way to
produce x-ray spectra.

B. X-ray Spectra

Using sampled coordinates produced by our Monte-
Carlo simulation is run through FEFF-9 XANES cal-
culation to produce the spectra shown in figure 1. We
produced 500 different spectra which are then averaged
together to produce a final, vibrationally averaged, spec-
tra which is then compared to a spectra produced using
the DW factors calculated by [2].

FIG. 1. An averaged OCCl2 spectra produced with randomly
sampled coordinates [red] and an OCCl 2 spectra calculation
from Debye-Waller factors.

The agreement between the two spectra greatly sug-
gests that the sampled coordinate method produces a
similar amount of accuracy to the spectra calculated with
DWF. Furthermore, this spectra was produced with only
500 points leaving an error of roughly a %5 error on every
point. With more sampled points we would have a finer
level of accuracy and would be able to calculate more
points with the same level of accuracy.

C. GeCl4 Spectra

Another simple molecule that we compared to was
GeCl4. There is significant documentation on GeCl4 and
serves as a standard example when calculating theoreti-
cal XANES spectra.

Both the spectra calculated from sampled coordinates
and the spectra calculated using DWF agree with ex-
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FIG. 2. A spectra of GeCl4 where blue shows a calculation
using sampled coordinates while red shows a calculation using
DWF. An experimental spectra in black is also overlayed.

perimental data [6] when both spectra intensities were
aligned with the experimental version. Particularly, the
sampled coordinate spectra agrees extremely well with
experimental data at higher energies when approaching
EXAFS region. Again both spectra greatly capture the
peak near the K-edge, however it appears the sampled
coordinate misaligns a few eV after the edge. Both the-
oretical spectra miss a small feature shown in the exper-
imental data. This small peak may be due to a many-
body cascading effect in the x-ray spectra which becomes
difficult to capture with the calculation shown here. Fur-
thermore, it appears that the difference in energy be-
tween the small and large peaks is roughly 11.6 eV which
happens to be the ionization energy of GeCl4 indicating
a feature that might be caused by this many-body effect.
Further investigation into this feature would be needed
to help improve the ability of our sampled coordinate ap-
proach. Regardless, our sampled coordinate method still
produces a greatly agreeing spectra to both experimental
data and previous methods of XANES calculation.

D. SF6 Spectra

While OCCl2 provides a good base demonstration of
the utility of the sampling method, we hypothesize that
this method should be able to capture some additional
local atomic displacement XANES peaks that were not
captured previously. In particular, experimental SF6

spectra shows these additional features [9]. By producing
a proper SF6 dynamical matrix, we can use the inverse
transform sampling methods to produce new coordinates
that, when averaged, contain proper thermal distortions.
This should account for peaks that are caused by local
atomic displacements as we are able to directly capture
this motion in our spectra.

As discussed in [8], we performed an average over many
displacements from the equilibrium position to produce
the spectra in figure 3. Although we had expected the
appearance of many peaks that are caused by vibronic
coupling, we could still only produce a single absorption
peak similar to a potential calculation with no shifting
of the absorber. Even over a variety of temperature we
see no strong indication of additional peaks and little
agreement to spectra in [9].

FIG. 3. An averaged SF6 spectra produced with randomly
sampled coordinates where dotted-dashed spectra is T =
300K, dashed spectra is T = 3000K, and solid spectra is T =
9234K.

The spectra in [8] was produced by displacing the sul-
fur atom (0.1, 0.1, 0.1) angstroms and running a XANES
calculation. This decision was motivated as this is the
amplitude consistent with measured Debye-Waller fac-
tors for the sulfur atom. Using our method for calcu-
lating DW factors, we see that our DW factors for SF6
agree with the DW factors used in [8]. However, if we
were to weight all of the DW factors into to the displace-
ment of the S atom, we only see a displacement of 0.042
angstroms instead of the 0.173 angstrom displacement
used. This is an overestimation by over a factor of four
and could account for the differences between the two
spectra.

We estimate a very high temperature, on the order of
16000 K, would be needed to achieve a displacement of
0.173 angstroms for the sulfur atom. Although running a
spectra calculation at 16000 K is possible, it becomes un-
realistic as a result because our quasi-harmonic approx-
imation begins to see failure. Furthermore, at 16000K,
the sulfur atom is not the only atom in the molecule that
is shifted. This affects the calculation, despite using the
sulfur atom as the absorber, as DWF rely on the aver-
age bond length between other atoms as well. Figure 4
compares the three different spectra. Although both the
spectra calculated with DWF and sampled coordinates
do not capture the small peak at 2490 EV, the sampled
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coordinate spectra shows a slight increased trend indi-
cating the presence of these peaks. We are unsure why a
displacement of 0.173 angstroms generates these features,
but the sampled coordinate method, with an average dis-
placement of the same amount, does not generate these
features.

FIG. 4. A spectra calculated with DWF (black), a spectra
calculated with sampled coordinates (blue), and a spectra cal-
culated with only the S atom perturbed by 0.173 angstroms
(red) are overlayed together.

V. CONCLUSION

We demonstrated that the inverse transform sampling
technique produces accurate Debye Waller factors which
are essential in producing accurate x-ray spectra. With
just 1000 samples, our technique matches that of pre-
vious calculations [2] of DW factors and that it can be
used to produce accurate spectra. Overall, there is now
no longer a need to separately calculate DW factors as we
can simply calculate XANES spectra using vibrationally
averaged coordinates. These coordinates should have the
vibrational effects factored in automatically and we sim-
ply have to generate a larger sample size for a higher
degree of accuracy.

Future plans include a more detailed analysis in the
discrepancy of the XANES spectra for SF6. If the extra
peaks produced in experimental SF6 are caused by vibra-
tional effects, the proper sampling technique should be
able to capture these effects. Regardless, this project
demonstrates great promise from its accurate ability
to calculate and incorporate Debye-Waller factors into
XANES spectra.
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