Constructing a Saturated Absorption Spectroscopy System for Laser Locking

Camden Kasik

Motivation Fine-Structure constant

- Fine-Structure constant
 - Fundamentally characterizes electromagnetic interactions of charged particles
- Advance interferometry measurements
 - Gravity gradients
 - Equivalence principle tests
- Test of Quantum Electrodynamics (QED) theory
- Best measurements
 - 0.25ppb Electron $g_e 2$ [1]
 - 0.2ppb from cesium recoil [2]
- Our goals
 - 0.1ppb from recoil

[1] Tatsumi Aoyama, Masashi Hayakawa, Toichiro Kinoshita, and Makiko Nio Phys. Rev. Lett. **109**, 111807 – (2012)
[2] Parker, R.H., et al., Science 360, 191-195 (2018).

Laser cooling

- Atomic beam
 - Oven with two holes
- Zeeman Slower
 - Doppler effect
- Magneto Optical Trap
 In an ultrahigh vacuum
- Optical Dipole trap
 - Evaporative cooling

Laser cooling

- Atomic beam
 - Oven with two holes
- Zeeman Slower
 - Doppler effect
- Magneto Optical Trap
 In an ultrahigh vacuum
- Optical Dipole trap
 - Evaporative cooling

Laser cooling

- Atomic beam
 - Oven with two holes
- Zeeman Slower
 - Doppler effect
- Magneto Optical Trap
 In an ultrahigh vacuum
- Optical Dipole trap
 - Evaporative cooling

Our way of measuring it

$$\alpha^2 = \frac{4\pi R_\infty}{c} \frac{m}{m_e} \frac{\hbar}{m}$$

- Recoil frequency method- Rate of phase evolution
- Bose Einstein Condensate (BEC) for low velocity distribution
 - Coherence
- Contrast Interferometer (CI)
- Bragg pulses for acceleration
 - Standing waves
 - Make diffraction grating

Our way of measuring it

- Recoil frequency method- Rate of phase evolution
- Bose Einstein Condensate (BEC) for low velocity distribution
 - Coherence
- Contrast Interferometer (CI)
- Bragg pulses for acceleration
 - Standing waves
 - Make diffraction grating

Image from: B. Plotkin-Swing, D. Gochnauer, . McAlpine, A. O. Jamison and S. Gupta, arXiv:1712.06738

Contrast Interferometer

Measuring the recoil frequency from phase

- Acceleration increases precision
- Recoil Frequency
 - What is this

•
$$\Phi(2T) = \frac{1}{2}n^2\omega_{recoil}T + \phi_{offset}$$

$$\frac{\delta\omega_{recoil}}{\omega_{recoil}} = \frac{\delta\phi}{\frac{1}{2}n^2\omega_{recoil}T\sqrt{M}} \leftarrow \text{Number of shots}$$

• $\Delta P = n\hbar k$

Measuring the recoil frequency from phase $\omega_{recoil} = \frac{\hbar k_{laser}^2}{2m}$

•
$$\omega_{recoil} = \frac{\hbar k_{laser}^2}{2m}$$
 • $\alpha^2 = \frac{4\pi R_{\infty}}{c} \frac{m}{m_e} \frac{\hbar}{m}$

•
$$\alpha^2 = \frac{4\pi R_\infty}{c} \frac{m}{m_e} \frac{\hbar}{m}$$

What I did

Need on the order of a MHz

- Laser frequency stabilization
 - Laser for cooling and diffraction beams

Frequency axis

• Doppler effect

•
$$\omega_{recoil} = \frac{\hbar k_{laser}^2}{2m}$$

What I did

Need on the order of a MHz

- Laser frequency stabilization
 - Laser for cooling and diffraction beams
 - Doppler effect

•
$$\omega_{recoil} = \frac{\hbar k_{laser}^2}{2m}$$

- Fixing Doppler broadening
- Probe beam is the one detected

- Fixing Doppler broadening
- Probe beam is the one detected

- Acousto Optical Modulator (AOM)
 - Shift frequency
 - Modulates frequency
 - RF to sound waves
- Mix modulation signal with transmission
- Error signal
 - Lock to negative slope at 0

- Acousto Optical Modulator (AOM)
 - Shift frequency
 - Modulates frequency
 - RF to sound waves
- Mix modulation signal with transmission
- Error signal
 - Lock to negative slope at 0

Problems

- 60Hz noise
 - Heater tape
 - Correct grounding

It Works!

About 6.3MHZ with 10:1 signal to noise

What is next

 Use this instead of the old beat node system to continue main experiment

• Mount spectroscopy in 3x1 foot breadboard

Thanks

Linda Vilett Cheryl McDaniel Gray Rybka

Other contributions

• Polarization optimization

