Nuclear Beta Spectroscopy for the ⁶He Experiment

SADHANA SURESH

2017 INT REU

FINAL PRESENTATION

Outline

Motivation for ⁶He experiment

Background Information

- Weak Interaction
- Helicity/Chirality

Detector

- Purpose
- Components and Operation
- Setup

Results

Future Plans

Motivation for ⁶He Experiment

Beta Spectroscopy
Search for BSM physics
Chirality flipping interactions

Standard Model Interaction New physics – Grand Unified Theory

Background – Weak Interaction

Basic Facts

- 1 of 4 Fundamental Forces
- Responsible for Beta Decay
- Mediated by the W⁺, W⁻, and Z bosons

Interaction Hamiltonian – Only Left handed Vector and Axial Vector components

$$H_{\text{int}}^{VA} = \sum_{i=V,A} (\bar{\psi}_p O^i \psi_n) [(C_i + C'_i) \bar{\psi}_e^L O_i \psi_\nu^L]$$

Standard Model of Elementary Particles

Interaction Hamiltonian

$$H_{\text{int}}^{VA} = \sum_{i=V,A} (\bar{\psi}_p O^i \psi_n) [(C_i + C'_i) \bar{\psi}_e^L O_i \psi_\nu^L + (C_i - C'_i) \bar{\psi}_e^R O_i \psi_\nu^R] + \text{h.c.}$$

+
$$H_{\text{int}}^{ST} = \sum_{i=S,T} (\bar{\psi}_p O^i \psi_n) [(C_i + C'_i) \bar{\psi}_e^R O_i \psi_\nu^L + (C_i - C'_i) \bar{\psi}_e^L O_i \psi_\nu^R] + \text{h.c.}$$

New physics – right-handed currents and chirality flipping interactions

Background – Fierz Interference

 $H_{int} = H_{VA} + H_{ST}$

Fermi's Golden Rule:
$$\Gamma_{a \to b} = \frac{2\pi}{\hbar} [\langle f | H_{int} | i \rangle]^2 \rho$$

 $[\langle f | H_{int} | i \rangle]^2$ will cause cross terms – Fierz Interference

 $b \approx \pm \Re \left[\alpha \left(\tilde{C}_S + \tilde{C}'_S \right) + \beta \left(\tilde{C}_T + \tilde{C}'_T \right) \right]$ $\frac{dW}{dt} \approx \frac{dW_0}{dt} \left(1 + r(E) + R(E) + \frac{m}{E} b \right)$

 $\alpha = 0$ for pure Gamov-Teller Transition (like ⁶He)

Not Lorentz Invariant

Beta Spectra from ⁶He

o Emitted betas will undergo cyclotron motion

•Due to relativity – the frequency of motion is related to energy:

$$f_c = rac{\omega_c}{2\pi} = rac{1}{2\pi} rac{eB}{\gamma m} \qquad \gamma = rac{K+m}{m}.$$

•Experiment will sample frequencies at varying B

•Detector will normalize spectra by monitoring the number of ⁶He atoms

My REU Project

Detector

Diagram

Components

- -Wire Chamber
 - Anode (red)
 - Cathodes (blue)
- -Silicon Detector
- -High Voltage Connection
- -Gas Input Valve

Detector

Wire Chamber

- β particles will ionize gas atoms
- High voltage (2800 V) accelerates dislodged charged particles
- Charged particles will continue to ionize gas atoms (avalanche)
- Charge will collect on wires induce a current

Silicon Detector

- B particle will continue to Silicon detector
- Semiconductor detector

Coincidence is set up – highly sensitive to Betas but not background

Detector- Setup

Proportional Counter

Results - Analysis

Net Counts	Ur	ncertainty	Residuals
	1.175	0.005	-45.5957
	1.332	0.006	-13.1242
	2.013	0.008	78.05663
	1.454	0.006	8.303193

Future Plans

•Reduce noise – possibly with Mylar sheet over Silicon detector

•Take background for each trial

•Stabilize the Beta source

Acknowledgements

o NSF and INT REU

• Faculty and Staff at UW Physics and CENPA

ODr. Alejandro Garcia and his group

References

"Detection of cyclotron radiation applied to searches for chirality-flipping interactions" By M. Fertl et. al.

Chirality of Photons & Electrons, University of Nebraska, physics.unl.edu/~tgay/content/CPE.html.

Proportional counter. (2017, August 05). Retrieved August 16, 2017, from https://en.wikipedia.org/wiki/Proportional_counter

Standard Model. Retrieved August 16, 2017, from https://en.wikipedia.org/wiki/Standard_Model