

Noise Calibration in the ADMX Receiver Chain

Jenny Smith

Harvey Mudd College

Advisors: Leslie Rosenberg and Gray Rybka

August 16th 2017

Pacific Northwest LABORATORY

The University Of Sheffield.

Figure from KIPAC

Outline

Motivation/ Background

Noise Temperature Measurement

Results

Conclusion

The Axion

An elegant solution to two problems

ADMX Public Website

ADMX

The Biggest and the Best

ADMX

Power of axion signal in cavity:

 $\approx 10^{-24}$ Watts

Dicke Radiometer Equation:

$$SNR = \frac{P_a}{P_N} \sqrt{Bt}$$

Scan Time with Fixed SNR

scan rate $\propto (B_0^2 V)^2 \frac{1}{T_s^2}$

Sensitivity with fixed scan rate

System Temperature (Ts) is a critical system parameter

Khatiwada 2017

ADMX Collaboration: S.J. Asztalos et al. Phys. Rev. Lett. 104:041301, 2010

Noise Temperature

Room Temperature Measurement

LNF Noise Temp, Physical Temp 300K

Liquid Nitrogen Test

"Due to be calibrated in 1996"

LNF Noise Temp, Physical Temp 300K

A PERMIT

Cryo Test

6

Setup

LNF Amp

ITR

SC TEMP

TE DEL

Attenuator

Temp Sensor

9

Heater

Results

Amp Noise Temp, Physical Temp ~10K

Conclusion

Ts is a critical parameter in determining ADMX sensitivity and scan rate

Do not trust things that are out of calibration. Do trust liquid nitrogen.

Noise temperature measurements are hard LNF 021 H looks like a promising amplifier to add to the ADMX receiver chain!

Thank you to the ADMX team!

W UNIVERSITY of WASHINGTON

Thermometry Data

Manufacturer Data RT Noise Temp: ~60K

The Axion

An elegant answer to two problems

Axion Mass Constraints

Detection Theory

Resonant conversions of axions to photons:

$$\mathcal{L}_{a\gamma\gamma} = g_{\gamma} \frac{\alpha}{\pi} \frac{a(x)}{f_a} \mathbf{E} \cdot \mathbf{B},$$

Axion coupling constant

Kim-Shifman-Vainshtein-Zakharov (KSVZ) model, $g_{\gamma} = -0.97$ DineFischler-Srednicki-Zhitnitsky (DFSZ) model $g_{\gamma} = 0.36$

Haloscope Detection Scheme

The Axion

An elegant answer to two problems

Nuclear Physics Problem

Dark Matter Problem

Why do two seemingly unrelated terms in QCD Lagrangian cancel to $1 \text{ part in } 10^{10}$?

What is this "missing mass" that makes up \sim 30% of our universe?

Axion Mass: $m_a = \frac{(m_u m_d)^{1/2}}{m_u + m_d} \frac{f_{\pi}}{f_{PQ}/N} m_{\pi}$

Axion field could explain this hidden symmetry

Axion Density: 10¹⁴axions/cm³ in the local galaxy

Yes, Heater Works

Results

Dark Matter: The Evidence

Bullet Cluster (Colliding Galaxies)

X-ray: NASA/CXC/M, Markevitchet al. Obtical: NASA/STScI: Magellan/U.Arizona/D.Clowe et al. Lensing Map: NASA/STScI; ESQ WFI; Magellan/U.Arizona/D.Clowe et at.

Gravitational Lensing

Max Planck Society Millennium Simulation Project Springel et al. (2005)

Galactic Rotation Curve

SuperCDMS (Queens University)