Investigating bilayer and thick WTe₂

Moira Miller

Mentor: Professor David Cobden

2D Van der Waals structures

- Semimetals (graphene)
- Semiconductors
- Superconductors
- Insulators (hBN)
- Investigate new physics in 2D
 - easier to change the carrier density
 - tuning between electronic states

Example of 2D heterostructure

WTe₂ (Tungsten Telluride)

Monolayer lattice structure

Trilayer and above act like a semi-metal

Try to classify behavior of monolayer and bilayer

Encapsulating WTe₂

WTe₂ oxidizes in air

Encapsulated WTe₂ acts like a semi-metal

Encapsulate with hBN, an inert dielectric

Encapsulated WTe₂

Top and bottom gates

Ramp top and bottom gate voltages to change the electric field and carrier density on the WTe_2

Observe by probing the WTe₂

Want to see if we can observe an effect on the top gate

$$D \approx \frac{1}{2} (D_b + D_t) \approx \frac{1}{2} \epsilon_{BN} \left(\frac{V_{bg}}{d_{bg}} - \frac{V_{tg}}{d_{tg}} \right)$$
$$\Delta(n-p) = \epsilon_{BN} \left(\frac{V_{bg}}{d_{bg}} + \frac{V_{tg}}{d_{tg}} \right)$$

Ferroelectric materials

Switchable macroscopic polarization induced by a transverse electric field

Observed by an induced hysteresis in polarization as a result of changing electric field

Ferroelectric materials

Switchable macroscopic polarization induced by a transverse electric field

Observed by an induced hysteresis in polarization as a result of changing electric field

 Graphene $(V_{tg}) = -5V$

 hBN

 Ferroelectric material

 hBN

 HBN

 Ferroelectric material

 HBN

 FLG $(V_{bg}) = 5V$

Hysteresis loop¹

WTe₂ ferroelectric metal?

In a metal, free electrons are expected to screen the ability of dipole moments to affect overall electrostatic forces

Bilayer and trilayer WTe₂ show strong hysteretic conductance

Inversion symmetry

Hysteresis observed in previous bilayer device

Exfoliating using the Scotch tape method

 ${\rm SiO}_2$ substrate

Crystals exfoliated on Scotch tape to create few layers (pictured: graphite) Tape pressed down on SiO₂, heated at 100C After cooled, tape removed

Searching

Search in optical microscopes, looking for color, shape, and size Bulk (many

Graphene (monolayer)

AFM image

Searching 20x

Transfers

PC and PDMS \ stamp

Transfer setup

Glass slide

Compressible PDMS covered with sticky PC (polymers)

Stamp approaching FLG

Transfers, contacts, wire bonds

Device on stamp (all photos in 100x)

Device after melting down on WTe_2

Electron beam lithography to create the pattern, evaporated gold

Bilayer device

Cryostat used for measurements

Demonstrate carrier density in bilayer device

Conductance vs. gate voltage in graphene

 $V_{\rm bg}$ set to $V_{\rm WTe2}^{},$ contacts not being probed grounded

G= I/V, at 4K

4K

Bulk WTe_{2.} device

Hope to see if WTe₂ in bulk can have the same ferroelectric switching in the top few layers

Au

Use WTe₂ as the back gate

Acknowledgments

David Cobden, Tauno Palomaki, Boris Dzyubenko, Zayao Fei, Josh Kahn, Bosong Sun, Paul Nguyen, Wenjin Zhao

Gray Rybka and Deep Gupta

Cheryl McDaniel and Linda Vilett

1. https://www.doitpoms.ac.uk/tlplib/ferroelectrics/printall.php

