Fabricating and Studying van der Waals Heterostructures

Jordan Fonseca

UNIVERSITY of WASHINGTON

Xu Optoelectronics Laboratory

Why van der Waals heterostructures?

- Lab studies interaction between light, matter, and electric and magnetic fields
- Can stack layers of material to create van der Waals heterostructures to observe new physics
- High **degree of control** (electric, magnetic, mechanical) over sample
- Surface effects dominate
- Can study bilayer versions of ubiquitous systems such as p-n junctions

Geim & Grigorieva, Nature, 2013

- Hexagonal crystal lattice with chemical formula MX_2

- Hexagonal crystal lattice with chemical formula MX₂
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission

- Hexagonal crystal lattice with chemical formula MX₂
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission

- Hexagonal crystal lattice with chemical formula MX₂
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission

- Hexagonal crystal lattice with chemical formula MX₂
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission

- Hexagonal crystal lattice with chemical formula MX₂
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission

- Hexagonal crystal lattice with chemical formula MX₂
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission

- Hexagonal crystal lattice with chemical formula MX₂
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission
- Stacked monolayers give type II band alignment (p-n junction, as in a diode)

- Hexagonal crystal lattice with chemical formula MX₂
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission
- Stacked monolayers give type II band alignment (p-n junction, as in a diode)

- Hexagonal crystal lattice with chemical formula MX₂
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission
- Stacked monolayers give type II band alignment (p-n junction, as in a diode)

WSe ₂	
e-	MoSe ₂
↑	

WX,

MoX

- Hexagonal crystal lattice with chemical formula $\ensuremath{\mathsf{MX}}\xspace_2$
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission
- Stacked monolayers give type II band alignment (p-n junction, as in a diode)
- Forms interlayer exciton

- Hexagonal crystal lattice with chemical formula MX₂
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission
- Stacked monolayers give type II band alignment (p-n junction, as in a diode)
- Forms interlayer exciton

- Hexagonal crystal lattice with chemical formula MX₂
- Semiconductor with gap between valence band and conduction band
- Monolayers have direct bandgap in visible spectrum → strong absorption and emission
- Stacked monolayers give type II band alignment (p-n junction, as in a diode)
- Forms interlayer exciton

Studying interlayer excitons

- Applied electric field reveals quantumconfined Stark effect
- Want to measure exciton **decay time** and **energy emission spectrum** as a function of the applied electric field

Schaibley et al., Nature Reviews: Materials, 2016

Seeing the physics: device to data

Find materials Ensure quality

 \bullet

Characterize

Design device

• Stack pieces

- Make electrical contact
- Wire electrical contacts to cryostat

 Cool to T < 4K

- Collect data
- Discover interesting new physics?

Fabrication Process: Collecting Materials

Fabrication Process: Device Planning

Or, "measure twice, cut once"

Desired electrical control dictates stacking pattern

Need to know precise orientation and where to pick up each piece

Fabrication Process: Transfer

many degrees of freedom

Fabrication Process: Transfer

Melting down stamp covering assembled device onto chip

Fabrication Process: Evaporating Contacts

Fabrication Process: Evaporating Contacts

Fabrication Process: Evaporating Contacts

Chip with stacked device

Fabrication Process: Wire-bonding & Cooldown

Wiring electrical contact (gold) between device and mount

Completed device in cryostat

Data Collection: Experimental Schematic

What it means; where its going

- Discovering new physical phenomena
- Applications to photon energy harvesting, information technology and perhaps more
- Assembly and mass-production are difficult
- Not all the observed effects are understood, and not all the predicted effects have been observed
- "Publish or perish" → "Device or doom"

Acknowledgements

- The NSF REU program and the University of Washington
- Professor Xiaodong Xu for hosting me in the lab
- Pasqual Rivera for mentoring me
- The Xu group for answering questions and supporting my work, especially Nathan and Gen for taking time to help me with my project

UNIVERSITY of WASHINGTON

References

[1] A. K. Geim and I. V. Grigorieva, "Van der Waals Heterostructures," Nature, vol. 499, pp. 419 – 425, 2013.

[2] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Syler, W. Yao and X. Xu, "Valleytronics in 2D materials," *Nature Reviews: Materials*, vol. 1, pp. 1-15, 2016.

[3] X. Xu, W. Yao, D. Xiao and T. F. Heinz, "Spin and pseudospins in layered transition metal dichalcogenides," *Nature Physics*, vol. 10, pp. 343-350, 2014.

Fabrication Process: Transfer

Lifting piece off of chip

Melting down stamp covering assembled device onto chip

Full transfer station

