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Why van der Waals heterostructures?

Lab studies interaction between light,

matter, and electric and magnetic fields <
. hBN .

Can stack layers of material to create van

der Waals heterostructures to observe new s, o

physics wse, g

Fluorographene ‘

High degree of control (electric, magnetic,
mechanical) over sample

Surface effects dominate

Can study bilayer versions of ubiquitous
systems such as p-n junctions

Geim & Grigorieva, Nature, 2013
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Schaibley et al., Nature Reviews: Materials, 2016
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Transition metal dichalcogenides
(TMDs)

Hexagonal crystal lattice with chemical
formula MX,

WSe,

MoSe,
Semiconductor with gap between
valence band and conduction band

Monolayers have direct bandgap in
visible spectrum = strong absorption
and emission

Stacked monolayers give type Il band
alignment (p-n junction, as in a diode)
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Transition metal dichalcogenides
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WSe,
Hexagonal crystal lattice with chemical
formula MX, Mose;

Semiconductor with gap between
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Stacked monolayers give type Il band
alignment (p-n junction, as in a diode)
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Studying interlayer excitons

« Applied electric field reveals quantum-
confined Stark effect

« Want to measure exciton decay time
and energy emission spectrum as @
function of the applied electric field

Schaibley et al., Nature Reviews: Materials, 2016
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Seeing the physics: device to data
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Fabrication Process: Collecting Materials

Atomic force microscopy further resolves
distances and reveals cleanliness

Confaminant

/

20.0 um

Silicon chip



Fabrication Process: Device Planning

Or, "measure twice, cut once”

Need to know precise orientation and
Desired electrical control dictates stacking pattern where to pick up each piece

Graphite (conducts) :

WSe, - Mose, H E——— |




Fabrication Process: Transfer

Stamp

Glass slide

” Additional
thermal control

L many degrees of freedom
Si chip with target sample



Fabrication Process: Transfer

Melting down stamp covering
assembled device onto chip




Fabrication Process: Evaporating Contacts

e- beam

Chip with stacked device




Fabrication Process: Evaporating Contacts

e- beam

Chip with stacked device

Chip with stacked device




Fabrication Process: Evaporating Contacts

e- beam (A

Polymer coating Hl

Chip with stacked device

Gold evaporation

Polymer coating

Chip with stacked device

Chip with stacked device



Fabrication Process: Wire-bonding &
Cooldown

Wiring electrical contact (gold) between device and mount

Completed device in cryostat
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Data Collection: Experimental Schematic

N[gle][S]

/20 nm
pulse laser

J\

-

PL

Sample

\\

v

Spectrometer

Resolve photon
energies

d photon
counter

Resolve photon
arrival fimes



Graphite (conducts) C

MoSe,
WSe,

Stark-Shifted Emission Spectra

AU =0 Uu>ol"
®
N

A
-
Ny

AU <0

¥

Intensity (arb. units)

1.25 1.30 1.35 1.40
Photon Energy (eV)

G
=il

AUphoton = _ﬁ :

1l

Gate-Dependent Decay Times

Vb = -3V
Vb = 0V 1.0
Vb = 3V

o
N
1

Intensity (arb. units)
o
™

o
o
I 'l

= Vb=-3
e V=0
4 Vb=3

Applied field reduces
decay time

0.00

L] I L] L]
0.15 0.30 0.45 0.60



What it means; where ifs going

Discovering new physical phenomena

« Applications to photon energy harvesting, information technology and perhaps
more

« Assembly and mass-production are difficult

« Not all the observed effects are understood, and not all the predicted effects
have been observed

« “Publish or perish” = “Device or doom”
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Melting down stamp covering
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