Nuclear Beta Spectroscopy of the Future: Creation of a ^{131m}Xe source

Annie Ramey

Professor: Alejandro García

Questioning the Standard Model

- Motivation: search for new physics beyond the standard model's description of the weak interaction
- SM shows a Hamiltonian with vectors and axial-vector current components
- New physics challenges this, proposes scalar and tensor current components
 - includes "chirality-flipping", right handed neutrinos

$$H = \overline{\Psi}_{f} \gamma^{\mu} \gamma_{5} \Psi_{i} \quad 2C_{A} \stackrel{-L}{e} \gamma_{\mu} \gamma_{5} v_{e}^{L} + \overline{\Psi}_{f} \sigma^{\mu\nu} \Psi_{i} \quad \left[(C_{T} - C_{T}^{'}) \stackrel{-L}{e} \sigma_{\mu\nu} v_{e}^{R} + (C_{T} + C_{T}^{'}) \stackrel{-R}{e} \sigma_{\mu\nu} v_{e}^{L} \right]$$

What are we looking for?

$$H = \overline{\Psi}_{f} \gamma^{\mu} \gamma_{5} \Psi_{i} \quad 2C_{A} \stackrel{-L}{e} \gamma_{\mu} \gamma_{5} v_{e}^{L} + \overline{\Psi}_{f} \sigma^{\mu\nu} \Psi_{i} \quad \left[(C_{T} - C_{T}^{'}) \stackrel{-L}{e} \sigma_{\mu\nu} v_{e}^{R} + (C_{T} + C_{T}^{'}) \stackrel{-R}{e} \sigma_{\mu\nu} v_{e}^{L} \right]$$

$$dw = dw_{0} \left[1 + a \frac{\vec{p}_{e}}{E_{e}} \cdot \frac{\vec{p}_{v}}{E_{v}} + b \frac{\Gamma m_{e}}{E_{e}} \right] \qquad dw = \text{decay rate}$$

$$a = -\frac{1}{3} \frac{2|C_{A}|^{2} - |C_{T}|^{2} + |C_{T}'|^{2}}{2|C_{A}|^{2} + |C_{T}|^{2} + |C_{T}'|^{2}} \qquad b \approx \pm \frac{\text{Re}\left[2C_{A}\left(C_{T} + C_{T}'\right)\right]}{2|C_{A}|^{2} + |C_{T}|^{2} + |C_{T}'|^{2}}$$

Electron-neutrino correlation

Fierz interference

⁶He Project

- High intensity source of ⁶He delivers about 10¹⁰ ⁶He atoms/s
- ⁶He decay produces interactions that the standard model predicts to be purely axial
- Finding deviations from this SM prediction would point to the existence of tensor currents

Project 8 Collaboration

- Uses Cyclotron Radiation Emission Spectroscopy to determine the energies of beta emissions
- Measure beta spectrum for a gaseous Tritium source

Cyclotron Radiation Emission Spectroscopy (CRES)

 Electrons within a uniform magnetic field exhibit cyclotron motion at a frequency that can be used to determine the energy of the electron

$$\boldsymbol{\omega} = \frac{\boldsymbol{q}\boldsymbol{B}}{\boldsymbol{E}}$$

Goal of my summer: create a calibration source to connect to the Project 8 apparatus

- CRES has the potential to lead to a more precise value of *b*
- Has been successful in measuring energy of particles between 18 and 32 keV, but what about higher energy electrons
- We want a source that:
 - Emitted monoenergetic electrons
 - Had a half-life longer than one day.
 - Emitted electrons with energies in the 30 keV range as well as above 100 keV
 - Fulfilled the above qualifications at a pressure compatible with the Project 8 apparatus.

^{131m}Xe

(I) (I) (I) (I) (I) (I) (I) (I) (I) (I)			
Shell	Binding Energy (keV)	Energy of Electron (keV)	Fraction (%)
К	34.9	129	60.7
L-M	3.9	~ 160	33.44
Auger Electron	-	25	4.4

- ¹³¹I undergoes gamma decay to produce ¹³¹Xe ~ 1% of these decays result
- in a metastable state of ¹³¹Xe (^{131m}Xe) which has a half-life of 11.84 days
- As metastable ¹³¹Xe decays, it releases conversion electrons
- Normally, this is done by neutron irradiation of Xe, but this gives sources with pressures of < 1 atm

Step 1 – ¹³¹Xe extraction

- Collaboration with Don Hamlin at the hospital
- Hospital setup for ¹³¹
- Ag zeolite for absorbing ¹³¹
- Zeolite: porous material used for absorbing radioactive waste

Hospital Setup and Procedure

- Pumped overnight with all valves (A, B, and C), achieved a vacuum of about mid 10⁻⁶ Torr
- Closed valve A
- After five days, turned off heat, closed valve C , open valve A
- Cell was cooled using liquid N₂ causing Xe to condense on the walls of the copper cell.
- Close valve B was closed
- Disconnect cell

Step 2 – Test pressure inside cell

- Put cell in Ge detector in CENPA room 106
- Connect cell to test chamber to measure pressure within cell
- See if pressure would be compatible with project
 8 setup
- Hoping for a pressure of 10⁻⁶ Torr

Counting Room Setup and Procedure

- Pumped and baked for several days to establish a baseline pressure of 10⁻⁶ Torr with valve D open
- Connected copper cell, closed valve D
- Opened valve B and released the contents of the copper cell into the test chamber
- The spike in the pressure reading of the test chamber α to the pressure within cell

We observed a pressure spike of 1 x 10⁻⁶ Torr within test chamber

Calculations – activity of ¹³¹

- Measured using hospital's Ge detector on June 13, 2016
- Efficiency of detector found using a ¹³³Ba

source

$$\eta_{Barium} = \frac{\frac{dN}{dt}_{measured}}{\frac{dN}{dt} (Fraction)}$$

$$\frac{dN}{dt} = \frac{dN_{June\ 13}}{dt} e^{-\lambda T}$$

• Activity calculated to be 6.059 x 10⁵ Bq on the day of extraction $\frac{dN}{dt} = \eta \frac{dN}{dt} (Fraction)$

Calculations – amount of ¹³¹Xe

- Over period of 5 days, ¹³¹I should generate 2.62x10¹¹ molecules of Xe
- Test chamber was roughly 3000 times larger than cell
- Expected pressure inside cell: 1.680 x 10⁻⁶ Torr
- Expected pressure change in test chamber: 6.249 x
 10⁻¹⁰ Torr

$$PV = NkT$$

Conclusions

- Pressure within chamber of 10⁻⁶ Torr means pressure within cell of 10⁻⁴ Torr
- There must have been materials inside the cell other than the ¹³¹Xe
- This pressure, although greater than we expected, would still be compatible with the Project 8 set up.
- The getter pumps on the Project 8 apparatus should filter out any harmful material that may be in the cell.

What's next?

- Measurement of ^{131m}Xe source using Ge detector in room 106
- Connect source with Project 8 setup and test!

Thank you Alejandro and Arnaud!!

Any questions?

Calculation of Ge detector Efficiency

