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Abstract

A quark-diquark model is used to predict the nucleon Axial Form Factor more accurately
and rigorously than the currently accepted expression of a simple dipole form. The model
uses scalar vertex functions at the nucleon-quark-diquark vertices with parameters chosen to
accurately match nucleon electric and magnetic form factors. These parameters are then used
to independently predict the proton axial form factor.

1 Introduction

Since early scattering experiments and the inception of the parton model, the internal structure of
the nucleon has remained elusive. Improved theories and experiments determined that the quark is
a fundamental particle of the nucleon, and is bound to the nucleon by gluons. These interactions are
governed by the laws of quantum chromodynamics (QCD) which requires all strongly bound matter
to exist in an unbroken color charge symmetry, i.e., a color-singlet state. Due to the computational
complexity of QCD, however, the exact quark-gluon structure of the nucleon has not yet been
precisely determined. The naive quark-parton model states that the nucleon is made up of three
quarks, bound together by gluons.

In reality the three bound quarks make up only the valence structure of the nucleon, while there
also exist an infinite number of “sea” quarks and gluons. Because they exist in quark-antiquark
pairs, the “sea” quarks and gluons do not contribute to the nucleon’s valence charge structure. On
the other hand, they do contribute to the nucleon’s total spin. Neutrino Scattering experiments
performed in 1988 at the European Muon Collaboration (EMC) showed that the valence quarks
make up roughly 30% of the nucleon’s total spin. The exact machinery behind this phenomenon
is still of great interest, thus the “EMC Effect” remains an exciting theoretical and experimental
research topic.

Form factors are useful tools in characterizing the charge and angular momentum distribution
of the nucleon through scattering experiments. These experiments involve a lepton current and a
nucleon current, with a photon exchanged between the current vertices. The proton absorbs the
photon momentum, so the final nucleon momentum equals the sum of initial nucleon and photon
momenta, as denoted by p′ = p+ q. The proton current is decomposed electric and magnetic Sachs
form factors, GE(Q2) and GM (Q2), respectively. These form factors quantify the nucleon’s electric
and magnetic charge makeup, where larger scattering momenta q2 = Q2 correspond with higher
spatial precision, providing insight into small-scale nucleon charge and magnetization distributions.
Various models exist which accurately characterize these form factors.

Further understanding of nucleon structure can be provided through weak scattering experi-
ments, including quasielastic neutrino-nucleon scattering, charged pion electroproduction and ra-
diative muon capture [1]. These experiments are quite similar to those of electromagnetic scattering,
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but utilizing a weak boson propagator rather than a photon. These experiments are used to charac-
terize an additional class of form factors, made up by the axial form factor GA, pseudoscalar form
factor GP , and anapole form factor GT . These form factors are not quantified as completely as the
Sachs form factors due to experimental complexities. The axial form factor has mostly been char-
acterized with a phenomenological dipole form factor distribution, which has only been examined
at low-Q2 up to 1 Gev2. Upcoming experiments should provide additional data in the near future.
The importance of these form factors will be discussed in section 3.

A new model is proposed to allow further physical insight and rigor to the behavior of GA. The
model is a quark-diquark approximation with scalar vertices of similar form to the dipole approx-
imation. The strength of the model is shown by its ability to independently predict experimental
axial form factor data and predict higher-Q2 behavior as additional data are found. In order to
make this prediction, the model is fitted and normalized according to GE and GM data. The fit-
ted parameters and normalization are then carried over to the neutral weak current calculation to
predict GA.

2 Electromagnetic Form Factors

The scalar model follows a quark-diquark approximation with nucleon-quark-diquark vertices parametrized
by, Λ2/(k2 −Λ2), where Λ is an ultraviolet regulator and k is the lone quark momentum, as shown
in figure (1). The main advantages of the chosen vertex form are twofold - Λ encodes information
about the strength and cutoff of the model approximation, and the k dependence in the denomina-
tor enforces convergent behavior in the loop calculation. Thus, the model is manifestly covarient.
Furthermore, because of the similar structure of the scalar vertices to the dipole form factor, at
high Q2 the two models can be compared directly.

Figure 1: Feynman Diagram for electromagnetic current calculation in a
quark-diquark model. Here, p and p′ are the incoming and outgoing

nucleon momenta, k and k′ are the lone quark momenta, and p− k is
the diquark momentum. The total model calculation involves both

flavor singlet (scalar) and triplet (axial vector) diquark contributions.

The Sachs Form Factors GE and GM are calculated by first finding the Pauli and Dirac form
factors, F1 and F2. F1 and F2 are calculated by decomposing the electromagnetic current according
to,

Jµ = ū(p′)[F1γ
µ + F2

i

2M
σµνqν ]u(p). (1)
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GE and GM can be determined from F1 and F2 by,

GE = F1 −
Q2

4M2
F2

and
GM = F1 + F2.

In order to find F1 and F2 from our model, we must solve the electromagnetic current from the
Feynman diagram in figure (1) and match like terms to equation (1). The electromagnetic currents
are given by the covariant equations,

JµS =
Λ2

k2 − Λ2

Λ2

(k + q)2 − Λ2

i

(p− k)2 −m2
d

ū(p′)[
i(/k + /q +m)

(k + q)2 −m2
γµ
i(/k +m)

k2 −m2
]u(p), (2)

JµA =
Λ2

k2 − Λ2

Λ2

(k + q)2 − Λ2

igνρ
(p− k)2 −m2

d

ū(p′)[(−iγνγ5)
i(/k + /q +m)

(k + q)2 −m2
γµ
i(/k +m)

k2 −m2
(−iγργ5)]u(p),

(3)

where (1) and (2) correspond to scalar spin-0 and axial spin-1 diquarks, respectively.
Following the Feynman variable approach to integrate over k2 and matching like terms [3], we

find that:

F1S(q2) =
Λ2

8π2

∫ 1

0

δ(v + w + x+ y + z − 1)

∆3
(
∆

2
+ q2(v+y)(1− v−y−x) + (Mx+m)2) dV, (4)

F2S(q2) =
Λ2

8π2

∫ 1

0

δ(v + w + x+ y + z − 1)

∆3
2M(Mx+m)(1− x) dV, (5)

F1A(q2) =
Λ2

8π2

∫ 1

0

δ(v + w + x+ y + z − 1)

∆3
(∆+q2(v+x+y)(1−v−y)+2(Mx+m)2+4xMm) dV,

(6)

F2A(q2) =
Λ2

8π2

∫ 1

0

δ(v + w + x+ y + z − 1)

∆3
(−4Mx)(M(1 + x) + 2m) dV, (7)

where dV = dv dw dx dy dz, ∆ = Λ2(w+v)+q2(v+y)(v+x+y−1)+M2x(x−1)+m2(y+z)+m2
dx,

m is the lone quark mass, M is the proton mass, andmd is the diquark mass.
The total contributions from equations (4-7) to the total form factors F1tot and F2tot are cal-

culated based on SU(2)xSU(2) spin-flavor considerations [2]. The proton and neutron spin-flavor
wavefunctions are,

|Ψsf,p〉 = |uS〉 (8)

|Ψsf,n〉 =
1√
2
|uS〉+

1√
6
|uT 〉 − 1√

3
|dT 〉 , (9)

respectively. In the preceding notation, |uS〉 denotes a nucleon state featuring an up lone quark
and a flavor singlet diquark, while |dT 〉 represents a down quark and a flavor triplet diquark,
etc. Note that the proton contains a purely scalar diquark contribution involving equations (4-
5), although the axial contributions in equations (6-7) will be useful when considering axial form
factors.
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m md Λ md,a Λa
.419 .590 .670 .753 .293

Table 1: Fitted Parameters for Scalar and Axial Vector Contributions

(a) Proton Electric Form Factor, GE (b) Proton Magnetic Form Factor GM

Figure 2: Proton Form Factors evaluated using data from table (1)

Once the scalar- and axial vector- diquark contributions are determined, it is possible to solve
the Feynman diagrams for F1 and F2 covariantly using the Feynman integral approach over the
Feynman variables v, w, x, y, and z in equations (4-7). The integrations are performed numerically
by fitting to phenomenological data from Kelly [4]. The variables Λ, m and md, are free parameters
in the model. The results are shown in table (1).

The proton electromagnetic form factors are well-fitted from the model, as shown in figure (2).
There were difficulties, however, in fitting the proton and neutron form factors at the same time.
This discrepency would likely be minimized with the inclusion of the pion cloud. For the following
analysis of the weak axial form factors, the proton wavefunction will be sufficient.

3 Weak Axial Form Factors

The weak form factors are of utmost importance in understanding the proton spin problem. In
particular, the isovector axial form factor GA is useful in determining the nucleon’s spin-flavor
distribution. An accurate measurement of GA is useful in isolating strangeness and parity violation
in the nucleon [5]. GP is most useful to determine pion cloud contributions to the nucleon’s quark
distribution, while also testing the Partially Conserved Axial Current (PCAC) hypothesis through
the Goldberger-Treiman relation [6, 7]. GT is taken to be zero due to vanishing second-class currents
[8].

At Q2 between 1-5 GeV 2 GA is well-approximated by the dipole form, GD = ga(1 + Q2

MA
)−2.

Here, gA is the weak axial-vector coupling constant, which is an important fundamental quantity
in electroweak theory and is well-determined experimentally to gA = 1.28 [9], and MA is the “axial
mass” and is measured to MA = 1.069 [1]. Due to experimental challenges, the experimental data
on the axial form are currently only known up to Q2 = 1GeV 2. With higher-momentum data
coming out in the near future with -, it is likely that the dipole approximation will not hold and
new models will be necessary to better predict GA.

Using the quark-diquark model explained above, we can also calculate neutral current interac-
tions in order to predict GA and GP . The scalar diquark fitted quantities, m, md, and Λ, as well
as the F1 normalizations are carried over and used to predict the weak form factors.
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The axial form factors are related to the axial current by,

Aµ(q2) = ū(p′)[(γ5GA(q2) + 2Mγ5qµGp(q
2))

~σ3
2

]u(p) (10)

Solving figure (3), the axial currents for the scalar and axial vector diquarks are given by,

Aµ =
Λ2
a

k2 − Λ2
a

Λ2
a

(k + q)2 − Λ2
a

i

(p− k)2 −m2
d,a

ū(p′)[
i(/k + /q +m)

(k + q)2 −m2
γµγ5

i(/k +m)

k2 −m2
]u(p), (11)

Aµ =
Λ2
a

k2 − Λ2
a

Λ2
a

(k + q)2 − Λ2
a

igνρ
(p− k)2 −m2

d,a

ū(p′)[(−iγνγ5)
i(/k + /q +m)

(k + q)2 −m2
γµγ5

i(/k +m)

k2 −m2
(−iγργ5)]u(p),

(12)

We first calculate only the axial form factors, GA(q2). Decomposing into Feynman variables
and matching to the axial current form in equation (10), we find that the scalar and axial vector
contributions are given by,

GAS(q2) =
Λ2
a

8π2

∫ 1

0

δ(v + w + x+ y + z − 1)

∆3
(
∆

2
−q2(v+y)(1−v−y−x)+(Mx+m)2) dV, (13)

GPS(q2) =
Λ2
a

8π2

∫ 1

0

δ(v + w + x+ y + z − 1)

∆3
2M(xM(x+ 2v + 2y) +m) dV, (14)

GAA(q2) =
Λ2
a

8π2

∫ 1

0

δ(v + w + x+ y + z − 1)

∆3
(−∆

2
−q2(v+y−x)(1−v−y)+x2M2+2m2) dV, (15)

GPA(q2) =
Λ2
a

8π2

∫ 1

0

δ(v + w + x+ y + z − 1)

∆3
2M(xM(−1 + x+ 2v + 2y)− 4m) dV, (16)

for scalar diquark Axial and Pseudoscalar, followed by vector diquark Axial and Pseudoscalar
form factors. Note that md,a and Λa take on different values than the electromagnetic model, while
∆ follows the same form as equations (4-7) but with md,a and Λa rather than md and Λ.

Figure 3: Feynman Diagram for axial current calculation in a
quark-diquark model. Here, p and p′ are the incoming and outgoing

nucleon momenta, k and k′ are the lone quark momenta, and p− k is
the diquark momentum.

As before, the scalar and axial vector diquark contributions to the total weak current are not
intuitively obvious. A similar non-relativistic prescription to that of the electromagnetic form
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factors must be used starting with the flavor wave function and following symmetry arguments.
The axial wavefunction for the proton is composed,

|Ψa,p〉 =
3

2
|Ψs〉 −

1

2
|Ψa〉 , (17)

where |Ψs〉 and |Ψa〉 denote the scalar and axial vector diquark contributions, respectively. As in the
electromagnetic form factor analysis, these ratios are carried over to perform covariant calculations
in our model.

The axial form factors depend on both scalar and axial vector diquark contributions, as opposed
to the electromagnetic form factors which only make use of scalar contributions. By fitting the axial
form factor to experimental low −Q2 data from [1], it is possible to determine values for the axial
as well as scalar diquark model properties. Currently, various fitting schemes are being tested, and
a tentative plot is shown in figure (4).

Figure 4: Tentative plot of axial form factor, GA, data as calculated
from the model. The red dots mark those predicted from the model,

while the blue dots represent experimental data.

4 Current and Future Work

We are testing further fits of the Axial and Pseudoscalar Form Factors. In addition, we are in-
vestigating error estimates for data fits at various points of the project. Of great interest is the
inclusion of the Goldberger-Treiman relation in our analysis. The Goldberger-Treiman relation
provides additional information about the relationship between the Axial and Pseudoscalar Form
Factors, and allows us to peek into the nature of axial current conservation. Because axial form
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factors are relativelypoorly understood, additional insight into the relations between them would
be of great theoretical interest. Any further understanding of weak form factors brings us one step
closer to solving the ’Proton Spin Puzzle’.
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