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Goals and motivation

We seek a cavity which differentiates between left- and
right-handed light within the cavity volume.

QWP QWP

Defined photon spin may facilitate:

I spintronics: exciton polariton with known spin

I quantum information processing
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Introduction to the problem

We may associate photon spin with a corresponding
circular polarization.1

We seek to explore circularly polarized
light within an optical cavity.

Related problem: spin-preserving mirror

For incident light normal to a good conductor, we have(
E0R

E0I

)
N

=
Z2 cos θI − Z1 cos θT
Z2 cos θI + Z1 cos θT

≈ −1

where Z1,Z2 are the impedences of air and the conductor
respectively, and Z1 � |Z2|.

Hence, ER gains a uniform π phase shift and is
“reflected” with no preferred transverse axis.

1Simmons & Guttmann. States, waves, and photons. Addison-Wesley.
(1970).
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Introduction to the problem

Related problem: spin-preserving mirror

Quantities with handedness are not invariant under
reflections.

In particular, for circularly polarized incident light,

|R〉 → |L〉 ; |L〉 → |R〉

in the reflected basis.

It is useful to preserve one handedness in our cavity: hence, we
may use a quarter wave plate preceding the mirror to
“preserve” spin after reflection.
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Proposed cavity design

We use birefringent materials to impose
polarization-dependent path lengths.
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Proposed cavity design

Some nice symmetries

Rotation:

Reflection:
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Proposed cavity design

For simplicity, consider the above cavity with planar mirrors.
Behavior is entirely determined by propagation through free
space and birefringent materials.

Defining the propagation operator

Let |u(z) κ̂〉 be a state vector with a mode function u(r, z)
and transverse polarization vector κ̂.

We define a propagation operator Û(z) such that

(i) |u(z) κ̂〉 = Û(z) |u(0) κ̂〉.

(ii) Û(0) = 1.

(iii) [Û(z1), Û(z2)] = 0.

(iv) Û(z1)Û(z2) = Û(z1 + z2).
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(iv) Û(z1)Û(z2) = Û(z1 + z2).
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Proposed cavity design

Defining transverse rotations

If two transverse polarizations κ̂, ν̂ are non-parallel, then some
state |u1(z) κ̂〉+ |u2(z) ν̂〉 effectively comprises a vector field.

For an orthonormal polarization basis ı̂, ̂, denote

|u(z)〉 =

(
u1(z)
u2(z)

)
:= |u1(z) ı̂〉+ |u2(z) ̂〉 .

Then we may define the expected local rotation operator,

R(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
.
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Proposed cavity design

Hence we define propagation in some birefringent region
aligned with our polarization basis

Q̂(zi , zj) =

(
Û(zi) 0

0 Û(zj)

)

and the cavity roundtrip operator follows:

T̂ = Q̂(α + δ, α)R
(π

4

)
Q̂(2β, 0)R†

(π
4

)
. . .

Q̂(α + δ, α + δ)R
(π

4

)
Q̂(2β, 0)R†

(π
4

)
Q̂(α, α + δ)
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Proposed cavity design

T̂ =
1

2

(
Û(4α + 2δ) + Û(4α + 4β + 2δ)

)
I2 +

1

2
Û(4α)

(
Û(4β)− 1

)(
0 Û(3δ)

Û(δ) 0

)

Hence, we find (normalized) eigenvectors of

|u±〉 =
1√
2

(
±Û(δ)

1

)
|u(0)〉

with eigenvalues of

1

2
Û(4α + 2δ)

(
1 + Û(4β)±

(
Û(4β)− 1

))
,

that is,
Û(4α + 4β + 2δ), Û(4α + 2δ)
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Û(4β)− 1

))
,

that is,
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Û(4α + 2δ)

(
1 + Û(4β)±
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Designing metasurface-based optics

Metasurfaces use quasi-periodic arrays of subwavelength
structures to modify the phase of incident light.

A phase picture of optical elements

Phase profile for a thin lens with focal length f :

φ(r) = k
(√

r2 + f 2 − f
)

If we allow birefringence:

Half wave plate:
φx = π; φy = 0

Quarter wave plate:

φx =
π

2
; φy = 0
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Designing metasurface-based optics

Arbabi et al. implement arrays of elliptical, subwavelength
high-contrast posts to exhibit birefringence.

The group
claims the posts act as “weakly coupled low-quality factor
resonators”.2

In practice, post parameters are found by optimizing over a
given space of the following parameters:

I lattice constant

I post thickness

I major and minor post diameter

RCWA is used to determine phase and amplitude for a given
parameter set.

2Arbabi, Horie, Bagheri, & Faraon. Dieletric metasurfaces. Nature
Nano. 10, 937-944 (2015).
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Designing metasurface-based optics
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Designing metasurface-based optics
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Designing metasurface-based optics

Silicon nitride-based metasurfaces

Figure: low-contrast metasurface optics (SEM).3 (a) lens, (b)
vortex beam generator.

3Zhan et al.. Low-contrast dielectric metasurface optics. ACS
Photonics. (2015).
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Further work

I Complete characterization of cavity modes
I Transverse modes (cavity as system of coupled harmonic

oscillators)
I Explicit definition of propagation operator and mode

functions

I Simulate elements, cavity with FDTD
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