Using forces to understand pressure in a liquid

SHANNON ARMSTRONG

GROVE CITY COLLEGE

PETER SHAFFER AND THE PHYSICS EDUCATION GROUP UNIVERSITY OF WASHINGTON

What Is PER?

Research on the teaching and learning of physics

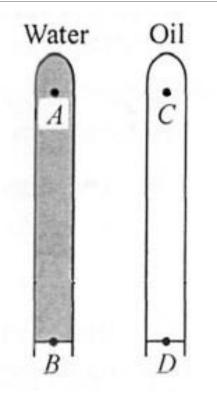
- Studies a wide range of students, from pre-K to university
- Uses research about student understanding to improve instruction (develop materials, modify delivery methods, etc.)

Context for Research

Calculus-based introductory course at University of Washington

- Lecture
- Lab
- Tutorials

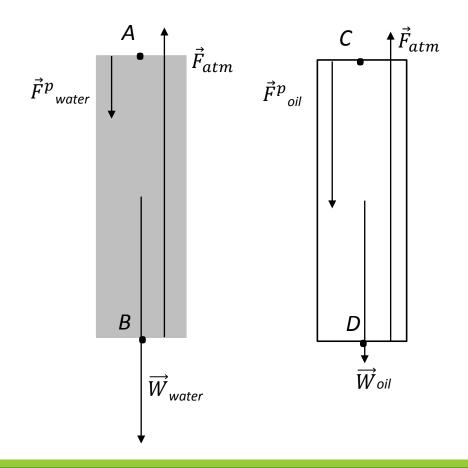
Covers dynamics, including fluids


Tasks are assigned on


- online pretests (given after lecture instruction)
- midterm exams
- final exams

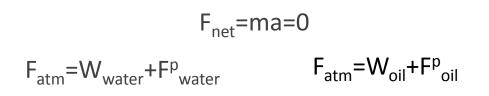
Tutorials

- Developed by the Physics Education Group to address student difficulties found in research
- Original tutorials were designed for Calculus-based introductory classes
- Supplement traditional lecture instruction
- Tutorials on pressure and buoyancy have been shown to improve performance on certain questions
- Continuously reassessed and revised based on current research


Motivation: Test Tube Question

- 1. Is the pressure at point *B greater than, less than,* or *equal to* atmospheric pressure?
 - 60% correct ($P_B = P_{atm}$)
- 2. Is the pressure at point *A greater than, less than,* or *equal to* the pressure at point *B*?
 - 70% correct ($P_A < P_B$)
- 3. Is the pressure at point *A greater than, less than,* or *equal to* the pressure at point *C*?
 - 20% correct (P_A<P_C)

Motivation: Test Tube Question

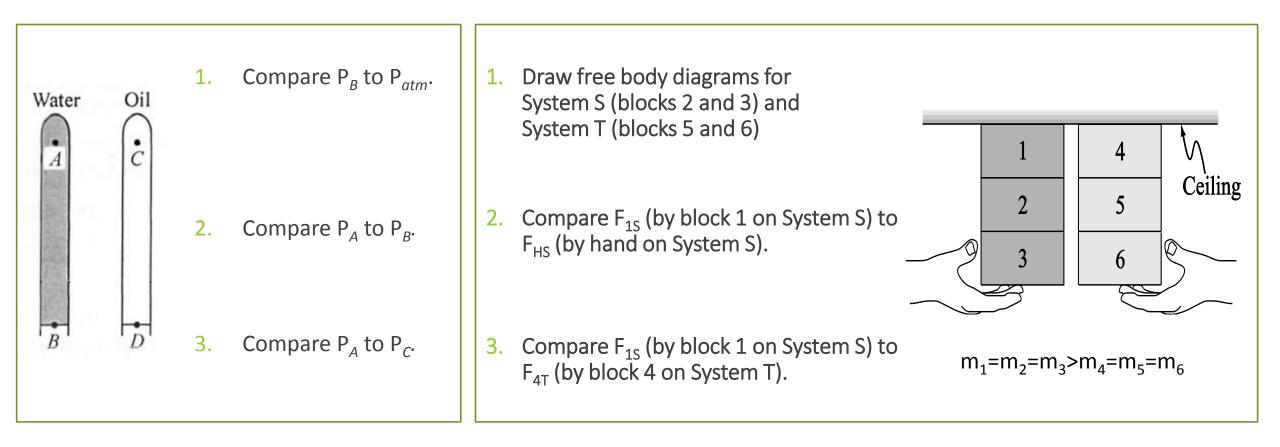


Is the pressure at point *A greater than, less than,* or *equal to* the pressure at point *B*

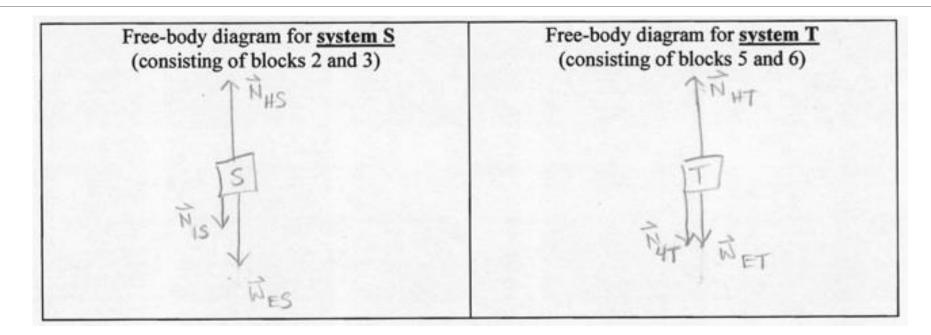
• 70% correct ($P_A < P_B$)

Is the pressure at point *A greater than, less than,* or *equal to* the pressure at point *C*?

• 20% correct (P_A<P_C)



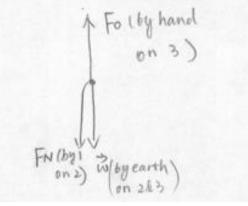
Research Question:

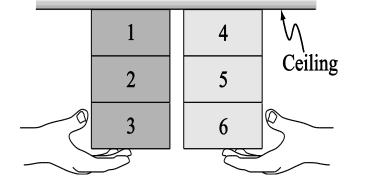

- To what extent can students reason about pressure using forces?
- This requires...
 - -Identifying forces and applying Newton's laws
 - -Treating a section of a liquid as an object

We designed two tasks to address the different aspects of this reasoning

First Task: Newton's Laws for Equilibrium

Results for Newton's Laws Task


F_{1S} **vs. F**_{HS} : 90%


 70% for analogous pressure question F_{1S} vs. F_{4T}: 45%
20% for analogous pressure question

Results for Newton's Laws Task

Difficulties in Reasoning:

• Differences in Free Body Diagrams

 Misunderstanding relationship between Normal Force and Weight

$$F_{1S}=W_1=m_1g$$

and $F_{4T}=m_4g$
so $F_{1S}>F_{4T}$

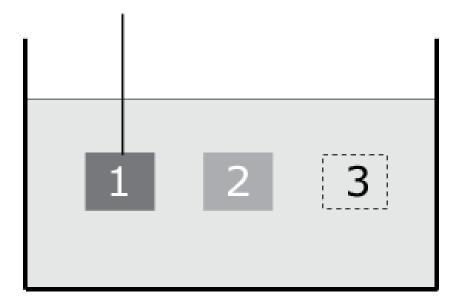
 Incorrectly Applying Newton's Second Law

F=ma
$$m_1 > m_4$$

so $F_{1S} > F_{4T}$

Summary of Newton's Laws Task

- More students demonstrate correct reasoning about forces than about pressure.
- However, some students have difficulty reasoning about forces at the level they need to when discussing pressure.


A problem similar to this task *could* be very beneficial for developing a greater understanding of forces and connecting that understanding to pressure.

Research Question:

- To what extent can students reason about pressure using forces?
- This requires...
 - -Identifying forces and applying Newton's laws
 - -Treating a section of a liquid as an object

We designed two tasks to address the different aspects of this reasoning

Second Task: Ranking Forces on a Liquid

Rank the buoyant forces on each cube. Explain.

Compare V1 to V2.

Compare $F_{1,top}$ to the $F_{1,bottom}$. Explain. Compare $F_{3,top}$ to the $F_{3,bottom}$. Explain. Compare $F_{1,total}$ to the $F_{3,total}$. Explain.

Results Coming Soon!

Acknowledgments

Physics Education Group

REU Staff

NSF

Dr. DJ Wagner and Grove City College Physics Education Research students

Questions?

Using the Pressure Equation

Water Oil

P=P_o+pgh

1. Is P_B , the pressure at point *B*, greater than, less than, or equal to P_{atm} , atmospheric pressure?

2. Is P_{A} , the pressure at point *A* greater than, less than, or equal to P_{B} , the pressure at point *B*?

3. Let $\Delta P_{BA} = |P_A - P_B|$ and let $\Delta P_{DC} = |P_C - P_D|$. Rank ΔP_{BA} and ΔP_{DC} .