Optical Optimization of Ion-Trapping Apparatus

VICTOR RAMIREZ ADVISOR: BORIS BLINOV UNIVERSITY OF WASHINGTON REU PROGRAM SUMMER 2016

Outline

- Background
 - Overview of quantum computing
- Experiment & Apparatus
 - Ion Trapping
- My Project
 - Imaging the trapped ions with an objective lens setup

Overview of Quantum Computers

- Instead of binary bits, QC's run on Qubits
- Qubits obey exploit two principles of quantum mechanics:
 - 1) superposition can be 0, 1, or both
 - 2) entanglement states of two different qubits can be correlated

http://qoqms.phys.strath.ac.uk/research_qc.html

Quantum Computing Applications

- Ability to model quantum systems
 - Such as high-Tc superconductors
- Better searching algorithms
- Cryptography, factorization of large numbers

LEFT: Proton-proton collision from LHC. Take from https://home.cern/about/updates/2016/05/2016physics-season-starts-lhc-0 RIGHT: Diagram of how encrypted communication would work. Taken from http://cdn.phys.org/newman/gfx/news/hires/2013/ justhowsecur.jpg

Outline

Background

- Overview of quantum computing
- Experiment & Apparatus
 - Ion Trapping
- My Project
 - Imaging the trapped ions with an objective lens setup

Quantum Computer Runtime

Why Trapped Ions?

- Advantages:
 - Ions isolated in vacuum chamber
 - Long coherence times
 - Short operation times from quantum gates (microseconds)
 - Basic requirements of quantum computation have been demonstrated

- Disadvantages:
 - Scalability; difficulty increases with more qubits

Realizing the Trapped-Ion Computer

- Use ions as qubits
- Ion Traps
 - radio frequency and DC voltages form "oscillating saddlepoints"

By Arian Kriesch Akriesch 15:58, 14 April 2006 (UTC) (also de:Benutzer:Akriesch) - Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=704260

Trapping Using Ba+ 138 and Yb+ 171

BA+ 138

493 nm

65_{1/2}

Ba⁺

Transitions in visible light spectra

YB+ 171

• Yb: initialization, readout, coherence time

Shelving: pump ions that transition to 5 D states back to 6 P states using 614 and 650 nm lasers –

493 nm laser is shined at ground state ion (Doppler cooling), transition to 6 P state

791 nm laser drives transition to ion groundstate450 nm UV flash completes ionization phase

Outline

- Background
 - Overview of quantum computing
- Experiment & Apparatus
 - Ion Trapping
- My Project
 - Imaging the trapped ions with an objective lens setup

Trapped Ion Imaging

- Qubit/ion states get read out as image captured by camera after quantum gate transformations
 - 0 = "bright" ion
 - 1 = "dark" ion

Trapped Ion Imaging

- Problem: Imaging system wasn't collecting a lot of light
 - Formed bad images
- Solution: Simulate and implement the optimal lens setup
 - Need to find following:
 - Which lenses to use
 - Optimal distance between ion and objective lens

Image captured by camera

Secondary lens -

Magnified Image formed by objective lens

Objective lens setup: aspherical lens on bottom, plano-convex on top

Vacuum viewport

lon

Measuring Effectiveness

POINT SPREAD FUNCTION

- Diffraction image of point object
- i.e. an intensity distribution of focal point

ENSQUARED ENERGY

- Uses PSF to measure energy
- Fraction of energy concentrated in a spot as a function of how big that spot is

Point Spread Function

ORIGINAL PLANO-CONVEX SETUP

INITIAL POSITION OF NEW SETUP

OPTIMAL

Ensquared Energy

ORIGINAL PLANO-CONVEX SETUP

INITIAL POSITION OF NEW SETUP

OPTIMAL

Very Little Room for Error!

Viewport-**Objective lens** distance error

Ion-lens misalignment error (comatic aberration)

Steady drop-off after 0.05 degrees of misalignment

~2 mm spacing for >90%

Results

Top left: OL at the wrong working distance

Top right: OL near the working distance, before adjusting for comatic aberration

Bottom left: 1st adjustment attempt at adjusting to working distance

Bottom right: OL at the right working distance, partially adjusting for comatic aberration

Future Work

- Measurements are inherently probabilistic
 - Keep making measurements until accurate

Thank you!

References

- Graham, R. D., S.-P. Chen, T. Sakrejda, J. Wright, Z. Zhou, and B. B. Blinov. "A System for Trapping Barium Ions in a Microfabricated Surface Trap." *AIP Advances* 4.5 (2014): 057124. Web.
- Rottenfusser, Rudi, Erin E. Wilson, and Michael W. Davidson. "Education in Microscopy and Digital Imaging." *ZEISS Microscopy Online Campus*. N.p., n.d. Web. 10 Aug. 2016.
- Wright, John Albert, Chen-Kuan Chou, and Carolyn Auchter. *Mixed Species Ion Chains for Scalable Quantum Computation*. Thesis. University of Washington, 2015. N.p.: n.p., n.d. Print.
- Dietrich, Matthew R. *Barium Ions for Quantum Computation*. Thesis. University of Washington, 2009. N.p.: n.p., n.d. *Arxiv*. Web.
- OPTICAL TEST EQUIPMENT: Ensquared and encircled energy testing attains 'automated' status. (n.d.). Retrieved August 13, 2016, from <u>http://www.laserfocusworld.com/articles/print/volume-47/issue-9/features/optical-test-equipment-ensquared-and-encircled-energy-testing-attains-automated-status.html</u>
- Simon, D.r. "On the Power of Quantum Computation." *Proceedings 35th Annual Symposium on Foundations of Computer Science* (n.d.): n. pag. Web.
- Shor, Peter W. "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer." *SIAM Rev. SIAM Review* 41.2 (1999): 303-32. Web.

Scalability

Method: many ion traps, coupled by photons Use two kinds of ions- 138 Ba⁺ and 171 Yb⁺ "Qubit" ion vs "Cooling/ Entangling" ion